Связь потенциальной энергии и силы

Пространство, в котором действуют консервативные силы, называется потенциальным полем. Каждой точке потенциального поля соответствует некоторое значение силы F, действующей на тело, и некоторое значение потенциальной энергии U. Значит, между силой F и U должна быть связь, с другой стороны, dA = –dU, следовательно Fdr=-dU, отсюда: Проекции вектора силы на оси координат:

Вектор силы можно записать через проекции: , F = –grad U, где .

Градиент – это вектор, показывающий направление наибыстрейшего изменения функции. Следовательно, сила равна градиенту потенциальной энергии, взятого с обратным знаком

 

 

24. Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

Примеры

Классическим примером этого утверждения являются пружинный или математический маятники с пренебрежимо малым затуханием.

 

25.

Условие равновесия механических систем  
 

 

Механическая система будет находиться в равновесии, если на неё не будет действовать сила. Это условие необходимое, но не достаточное, так как система может при этом находиться в равномерном и прямолинейном движении.. Учитывая формулы
F = –grad U

имеем .
Следовательно, система будет находиться в состоянии равновесия, если .

Именно так находят положение точек экстремума.
Таким образом, достаточным условием равновесия является равенство минимуму значения U (это справедливо не только для механической системы, но, например, и для атома).

 

26. консервати́вные си́лы (потенциальные силы) — силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил). Отсюда следует определение: консервативные силы — такие силы, работа которых по любой замкнутой траектории равна 0. Силы, что не принадлежат к консервативным, называют неконсервативными: - силы трения, которые возникают при скольжении одного тела по поверхности другого - силы сопротивления, которых испытывает тело, двигаясь в жидкой или газообразной среде. К консервативным силам относят силы притяжения, силы упругости и силы электростатического взаимодействия; к неконсервативным соответственно - силы трения и силы сопротивления.

27. Работа постоянной силы равняется скалярному произведению силы на перемещение A = |F|·|S|·cosa = (F·S)
Работа переменной силы Пусть тело движется прямолинейно с равномерной силой под углом £ к направлению перемещения и проходит расстояние S/ Работой силы F называется скалярная физическая величина, равная скалярному произведению вектора силы на вектора перемещения. A=F·s·cos £. А=0, если F=0, S=0, £=90º. Если сила непостоянная (изменяется), то для нахождения работы следует разбивать траекторию на отдельные участки. Разбиение можно производить до тех пор, пока движение не станет прямолинейным, а сила постоянной │dr│=ds.. Работа, совершенная силой на данном участке определяется по представленной формуле dA=F· dS· cos £= = │F│·│dr│· cos £=(F;dr)=Ft·dS A=F·S· cos £=Ft·S. Таким образом работа переменной силы на участке траектории равна сумме элементарных работ на отдельных малых участках пути A=SdA=SFt·dS= =S(F·dr).
Мощность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.
P=(A2-A1)/(t2-t1)-средняя мощность
P=dA/dt -мгновенная мощность

28. Основной закон динамики вращения (II закон Ньютона для вращательного движения):
Момент вращающей силы, приложенной к телу, равен произведению момента инерции тела на угловое ускорение.

Момент инерции тела характеризует инерционные свойства тела при вращательном движении подобно массе, характеризующей инерционные свойства тела при поступательном движении. Момент инерции тела имеет множество значений, в зависимости от оси вращения.

Если вращающий момент M = const постоянен и момент инерции J = const, то основной закон вращения можно представить в виде

M Δt - импульс момента силы, Jω-момент импульса тела.

29. Момент инерции — скалярная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).Единица измерения СИ: кг•м².

30. Момент силы— векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Момент силы относительно Если имеется материальная точка , к которой приложена сила , то момент силы относительно точки равен векторному произведению радиус-вектора , соединяющий точки и , на вектор силы : .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: