Основное направление использования низших олефинов

Применение алкеновнизших олефинов

Алкены применяются в качестве исходных продуктов в производстве полимерных материалов пластмасс, каучуков, пленок и других органических веществ.

Этилен этен Н2С=СН2 используется для получения полиэтилена, политетрафторэтилена тефлона, этилового спирта, уксусного альдегида, галогенопроизводных и многих других органических соединений.

Применяется как средство для ускоренного созревания фруктов.

Пропилен пропен Н2С=СН2-СН3 и бутилены бутен-1 и бутен-2 используются для получения спиртов и полимеров.

Изобутилен 2-метилпропен Н2С=ССН32 применяется в производстве синтетического каучука.

Промышленное использование этилена

Этилен используется для производства целого ряда химических соединений: винилхлорида, стирола, этиленгликоля, этиленоксида, этаноламинов, этанола, диоксана, дихлорэтана, уксусного альдегида и уксусной кислоты. Полимеризацией этилена и его прямых производных получают полиэтилен, поливинилацетат, поливинилхлорид, каучуки и смазочные масла.

Мировое производство этилена составляет порядка 100 млн тонн в год.

Промышленное использование пропилена

Пропилен в промышленности применяется, в основном, для синтеза полипропиле. Также из него получают кумол, окись пропилена, акрилонитрил, изопропанол, глицерин, масляный альдегид.

В настоящее время мировые мощности по выпуску пропилена составляют около 70 млн тонн в год.

Промышленное использование прочих алкенов

Бутилены применяют для производства бутадиена, изопрена, полиизобутилена, бутилкаучука,метилэтилкетона.

Изобутилен — сырье для получения бутилкаучука, изопрена, трет-бутанола; используется для алкилирования фенолов при синтезе ПАВ. Его сополимеры с бутенами применяют как присадки к маслам и герметики.

Высшие алкены С10С18 применяют при синтезе ПАВ, а также для получения высших спиртов.

 

 

Вопрос

Типичными представителями ароматических углеводородов являются производные бензола. Общая формула ароматических УВ CnH2n-6.

Различают бензоидные арены и их производные и небензоидныеазулен, пиррол. Склонность к реакциям замещения, а не присоединенияне обесцвечивает бромную воду в отличие от этилена. Склонность к реакциям замещения, а не присоединенияне обесцвечивает бромную воду в отличие от этилена.Но возможны реакции присоединения, окисления для моноядерныхаренов — в весьма жестких условиях иили с катализаторами. Основным источником получения ароматических углеводородов служат каменноугольная смола, нефть и нефтепродукты. Большое значение имеют синтетические методы получения. Наиболее важными аренами являются: бензол С6Н6 и его гомологи толуол С6Н5СНз, ксилолы С6Н4СНз2, кумол, нафталин C10H8 и их производные. Ароматические углеводороды — исходное сырьё для промышленного получения кетонов, альдегидов и кислот ароматического ряда, а также многих других веществ.

Условно арены можно разделить на два ряда. К первому относят производные бензола например, толуол или дифенил, ко второму — конденсированные полиядерные арены простейший из них — нафталин.

Способы получения:

1.Каталитическая дегидроциклизацияалканов, то есть отщепление водорода с одновременной циклизацией.

2.Циклическаятримеризация ацетилена и его гомологов над активированным углем при 600 °C.

3.Алкилирование бензола галогенопроизводными или олефинами. Реакция Фриделя — Крафтса

Бензол С6Н6 используется как исходный продукт для получения различных ароматических соединений — нитробензола, хлорбензола, анилина, фенола, стирола и т.д., применяемых в производстве лекарств, пластмасс, красителей, ядохимикатов и многих других органических веществ. Крупнейший потребитель бензола-производство стирола из этилбензола. Около 20% бензола используется для производства фенола,которое осуществляется в основном кумольным методом. Около 15% расходуется на производство циклогексана. Окислением бензола получают малеиновый ангидрид. Нитрированием бензола получают анилин. Алкилированием с последущимсульфинированием и щелочной обработкой производят синтетические моющие средства. Бензол в качестве добавки улучшает качество моторного топлива. Толуол С6Н5-СН3 применяется в производстве красителей, лекарственных и взрывчатых веществ тротил, тол. Некоторая часть производимого толуола служит сырьем для синтеза неуглеводородных органических соединений. Толуол используется как растворитель и как высокооктановая добавка к бензину. Производство взрывчатых вещ-в, бензойной кислоты.

Ксилолы С6Н4СН32 в виде смеси трех изомеров орто-, мета- и пара-ксилолов — технический ксилол — применяется как растворитель и исходный продукт для синтеза многих органических соединений. Около 16% ксилолов используется как высокооктановый компонент бензина, такая же часть в качестве растворителя и большая часть разделяется на индивидуальные изомеры. Почти весь орто-ксилол потребляется производством фталевого ангидрид.Из пара-ксилола получают поли-п-ксилен-термостойкий полимер.

Мета ксилол в основном изомеризуется в орто и пара изомеры. Изопропилбензол кумол С6Н4-СНСН32 — исходное вещество для получения фенола и ацетона. Винилбензол стирол C6H5-CН=СН2 используется для получения ценного полимерного материала полистирола.

Нафтол применяется для производства азокрасителей.

 

 

Вопрос

Кислород в асфальтенах входит не только в состав гетероциклов, но и в различные функциональные группы: гидроксильные, карбонильные, карбоксильные и сложноэфирные.

Сера входит также в состав сульфидных мостиков между фрагментами молекул асфальтена. Обнаружены циклические соединения, содержащие сульфоксидную группу.

Атомы азота находятся в составе пиридиновых и пиррольных колец, причем последние чаще всего встречаются в виде порфириновых комплексов ванадия и никеля.

Асфальтены представляют собой твердые аморфные вещества, плотность их выше 1,14, молекулярная масса от 2000 до 4000.

Асфальтены, выделенные из сырых нефтей, хорошо растворяются в сероуглероде, хлороформе, бензоле, циклогексане и других органических растворителях, но не растворяются в низших алкановых углеводородах. На этом свойстве основано выделение асфальтенов из нефти и нефтепродуктов.

При нагревании асфальтены размягчаются, но не плавятся; при температуре выше 300 0С они переходят в кокс и газ.

Полярные центры, возникающие в молекуле за счет гетероатомов и сопряженных систем-электронов ароматических фрагментов обуславливают склонность асфальтенов к ассоциации даже в разбавленных растворах. Эту способность асфальтены сохраняют и в нефтях. При достаточно большой концентрации асфальтенов они образуют коллоидную систему, которая определяет вязкость нефти.

Асфальтены химически активны. Они легко вступают в реакции окисления, сульфирования, галогенирования, нитрования, несколько труднее гидрируются. Асфальтенысклонны к комплексообразованию с хлоридами металлов и ортофосфорной кислотой.

Из асфальтенов нефтяных остатков продуктов термическойпереработки нефти выделяют две подгруппы соединений в зависимости от растворимости -карбены и карбоиды. Карбенынерастворимы ни в каких углеводородах и частично растворимы только в пиридине и сероуглероде; карбоиды не растворяются практически ни в чем.

Эти вещества отсутствуют в сырой нефти, они образуются в качестве вторичных продуктов высокотемпературной переработки нефти в присутствии кислорода или воздуха.

Следует сказать, что в природе самостоятельно существуют твердые смолообразные черные вещества — асфальты. Их залегание обычно связано с нефтяными залежами. Предполагают, что они образованы при испарении и одновременном окислении нефти в местах ее выхода на земную поверхность. В своем составе они содержат высокомолекулярные углеводороды, смолы и асфальтены.

 

Смолисто-асфальтовые вещества, найденные в нефти, имеют разное происхождение. Часть их составляют вещества, имеющие, по всей вероятности, реликтовый характер. Другая часть — продукты окисления и осернения высокомолекулярных углеводородов или абиогенного преобразования некоторых малоустойчивых гетероатомных соединений и углеводородов, преимущественно высокоциклической природы.

Присутствие смолисто-асфальтовых веществ в топливах и смазочных маслах нежелательно. Они ухудшают цвет, увеличивают нагарообразование, понижают смазочную способность масел. Смолисто-асфальтовые вещества отравляют катализаторы, вызывают закоксовывание аппаратуры при переработке нефти. В то же время смолисто-асфальтовые вещества входят в состав природных асфальтов и остатков вакуумной перегонки нефти и битумов, придают им ряд ценных технических свойств, позволяющих широко использовать их в народном хозяйстве.

В настоящее время битумы расходуются ежегодно десяткамимиллионов тонн. Большей частью они используются в составе дорожных покрытий как связующий, герметизирующий и гидроизоляционный материал для создания кровли, гидроизоляции фундаментов зданий и гидротехнических сооружений. Они служат для электроизоляции кабелей, аккумуляторов, входят в состав некоторых резин, лаков.

Очень важной областью их применения являются поверхностные покрытия подземных трубопроводов для защиты их от коррозии. Эффективность этого метода защиты определяется не только высокими гидроизоляционными свойствами битумных покрытий, но также и их хорошим электроизолирующим действием, сильно уменьшающим вредное воздействие блуждающих токов. В особенности ответственной является защита от коррозии магистральных нефтепроводов и газопроводов.

Битум может входить в состав промывочной жидкости, используемой при бурении. Качество битумов зависит от содержания в них различных смолисто-асфальтовых веществ. Так, асфальтены придают битумам твердость, повышают их температуру размягчения, а нейтральные смолы обеспечивают эластичность и повышают прочность.

На основании многочисленных исследований химического строения молекул асфальтенов считают, что последние представляют собой полициклическую, ароматическую, сильно конденсированную систему с короткими алифатическими заместителями у ароматических ядер. В молекулах асфальтенов присутствуют также пяти- и шестичленныегетероциклы. В зависимости от природы нефти количественное соотношение ароматических, нафтеновых и гетероциклических структурных элементов может меняться в широких пределах.

 

Предложены следующие типы полициклических структур — звенья молекул смол и асфальтенов:

Смолы представляют собой очень вязкие малоподвижные жидкости, а иногда и твердые аморфные вещества от темно-коричневого до бурого цвета. Плотность их близка к 1,1 гмл, молекулярная масса от 600 до 1000.

Смолистые вещества термически и химически нестабильны, легко окисляются и конденсируются,превращаясь при этом в асфальтены.

Смолы легко сульфируются, переходя в раствор серной кислоты. На этом основан сернокислотный способ очистки топлив и масел. Смолистые вещества образуют комплексы с хлоридами металлов, фосфорной кислотой.

Асфальтены являются более высокомолекулярными соединениями, чем смолы. Они отличаются от смол не только несколько меньшим содержанием водорода, но и более высоким содержанием гетероатомов. Предполагают, что асфальтены являются продуктами конденсации смол.

Основными структурными элементами молекулы нефтяных смол являются конденсированные циклические системы, в состав которых входят ароматические, циклоалкановые и гетероциклические кольца, соединенные между собой короткими алифатическими мостиками и имеющие по несколько алифатических, реже циклических заместителей в цикле. По Сергиенко С.Р., строение молекул смол можно представить одной из следующих формул:

Смолисто-асфальтовые вещества — сложная смесь наиболее высокомолекулярных компонентов нефти, содержание которых достигает 10-50 % масс. В высококонцентрированном виде смолисто — асфальтовые вещества находятся в природе в виде природных битумов. Смолисто-асфальтовые вещества представляют собой гетероорганические соединения гибридной структуры, включающие в состав молекул азот, серу, кислород и некоторые металлы Fe, Mg, V, Ni и др.. На долю углеводородной части смолисто-асфальтовых веществ приходится 80-95% всей молекулы. Наиболее богаты смолисто-асфальтовыми веществами молодые нефти ароматического основания. Нефти более старые, алканового основания, содержат смолисто-асфальтовых веществ значительно меньше.

Смолисто-асфальтовые вещества нефти принято разделять на группы в соответствии с растворимостью их в различных растворителях.

Смолисто-асфальтовые вещества объединяют две большие группы высокомолекулярных соединений нефти — смолы и асфальтены, в химическом составе, строении и свойствах которых имеется много общего. Соотношение между смолами и асфальтенами в нефтях и тяжелых остатках, где в основном они концентрируются, составляет от 9:1 до 7:1.

Смолы. Состав и свойства нефтяных смол зависят от химической природы нефти. Несмотря на различную природу нефтей различных месторождений, содержание углерода и водорода в смолах колеблется в сравнительно узких пределах в % масс. С- от 79 до 87, Н- от 9-11. В смолах нефтей различных месторождений неодинаковое количество гетероатомов. Так, содержание кислорода колеблется от 1 до 7 % масс., серы от десятых долей процента до 7-10%. В некоторых смолах содержится азот до 2 %.

Смолы составляют от 70 до 90 % всех гетероорганических соединений нефти. Они богаче водородом, чем асфальтены, на 1-2%. Большую часть смол составляют нейтральные вещества. Небольшое количество смол имеет кислый характер и образует асфальтогеновые кислоты. Они представляют собой вязкие, темные смолы, растворимые в спирте, бензоле, хлороформе.

Нейтральные смолистые вещества подразделяют по отношению к различным растворителям. На схеме представлена классификация и разделение смолисто-асфальтеновых веществ.

Нефти алканового основания парафинистые нефти характеризуются высоким содержанием смол 46% нейтрального характера.

Мальтены хорошо растворимы, имеют жидкую и полужидкую консистенцию, из гудронов они выделяются в виде твердых, но пластичных веществ. При нагревании, под действием кислорода, кислот, они уплотняются в асфальтены. Именно их присутствие и придает нефти серую окраску.

 

Вопрос

Полипропилен. Получение

Полипропилен получают полимеризацией пропилена в присутствии металлокомплексных катализаторов, например, катализаторов Циглера-Натта например, смесь TiCl4 и AlR3:

CH2=CHCH3 [-CH2-CHCH3-]

Международное обозначение — PP.

Параметры, необходимые для получения полипропилена близки к тем, при которых получают полиэтилен низкого давления. При этом, в зависимости от конкретного катализатора, может получаться любой тип полимера или их смеси.

Полипропилен выпускается в виде порошка белого цвета или гранул с насыпной плотностью 0,4-0,5 гсм. Полипропилен выпускается стабилизированным, окрашенным и неокрашенным.

Молекулярное строение

По типу молекулярной структуры можно выделить три основных типа: изотактический, синдиотактический и атактический. Изотактическая и синдиотактическая молекулярные структуры могут характеризоваться разной степенью совершенства пространственной регулярности. Стереоизомеры полипропилена существенно различаются по механическим, физическим и химическим свойствам. Атактический полипропилен представляет собой каучукоподобный материал с высокой текучестью, температурой плавления — около 80°С, плотностью — 850 кгм3, хорошей растворимостью в диэтиловом эфире. Изотактнчсский полипропилен по своим свойствам выгодно отличается от атактического, а именно: он обладает высоким модулем упругости, большей плотностью — 910 кгм3, высокой температурой плавления — 165-170°С и лучшей стойкостью к действию химических реагентов. Стереоблокполимер полипропилена при исследовании с помощью рентгеновых лучей обнаруживает определенную кристалличность, которая не может быть такой же полной, как у чисто изотактичоских фракций, поскольку атактические участки вызывают нарушение в кристаллической решетке. Изотактический и синдиотактический образуются случайным образом

Физико-механические свойства

В отличие от полиэтилена, полипропилен менее плотный плотность 0,91 гсм3, что является наименьшим значением вообще для всех пластмасс, более твёрдый стоек к истиранию, более термостойкий начинает размягчаться при 140 °C, температура плавления 175 °C, почти не подвергается коррозионному растрескиванию. Обладает высокой чувствительностью к свету и кислороду чувствительность понижается при введении стабилизаторов.

Поведение полипропилена при растяжении ещё в большей степени, чем полиэтилена, зависит от скорости приложения нагрузки и от температуры. Чем ниже скорость растяжения полипропилена, тем выше значение показателей механических свойств. При высоких скоростях растяжения разрушающее напряжение при растяжении полипропилена значительно ниже его предела текучести при растяжении.

Полиэтилен — термопластичный полимерэтилена. Является органическим соединением и имеет длинные молекулы …-CH2-CH2-CH2-CH2-…,

Самый распространённый в мире пластик[1].

Представляет собой воскообразную массу белого цвета тонкие листы прозрачны и бесцветны. Химически- и морозостоек, изолятор, не чувствителен к удару амортизатор, при нагревании размягчается 80-120°С, при охлаждении застывает, адгезия прилипание — чрезвычайно низкая. Иногда в народном сознании отождествляется с целлофаном — похожим материалом растительного происхождения.

Химические свойства

Общие свойства

Устойчив к действию воды, не реагирует с щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже концентрированной серной кислоты, но разлагается при действии 50%-ой азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора.

При комнатной температуре нерастворим и не набухает ни в одном из известных растворителей. При повышенной температуре 80 °C растворим в циклогексане и четырёххлористом. Со временем, деструктурирует с образованием поперечных межцепных связей, что приводит к повышению хрупкости на фоне небольшого увеличения прочности. Нестабилизированный полиэтилен на воздухе подвергается термоокислительной деструкции термостарению. Термостарение полиэтилена проходит по радикальному механизму, сопровождается выделением альдегидов, кетонов, перекиси водорода и др.

Полиэтилен низкого давления HDPE применяется при строительстве полигонов переработки отходов, накопителей жидких и твёрдых веществ, способных загрязнять почву и грунтовые воды.

Поливинилхлорид

Поливинилхлорид ПВХ, полихлорвинил, винил, вестолит, хосталит, виннол, корвик, сикрон, джеон, ниппеон, сумилит, луковил, хелвик, норвик и др. — бесцветная, прозрачная пластмасса, термопластичный полимер винилхлорида. Отличается химической стойкостью к щелочам, минеральным маслам, многим кислотам и растворителям. Не горит на воздухе, но обладает малой морозостойкостью 15 °C. Нагревостойкость: +65 °C.

Физические свойства

Молекулярная масса 9-170 тыс.; плотность — 1,35-1,43 гсм. Температура стеклования — 75-80 °C для теплостойких марок — до 105 °C, температура плавления — 150-220 °C. Трудногорюч. При температурах выше 110-120 °C склонен к разложению с выделением хлористого водорода HCl.

Растворяется в циклогексаноне, тетрагидрофуране ТГФ, диметилформамиде ДМФА, дихлорэтане, ограниченно — в бензоле, ацетоне. Не растворяется в воде, спиртах, углеводородах; стоек в растворах щелочей, кислот, солей.

Устойчив к действию влаги, кислот, щелочей, растворов солей, бензина, керосина, жиров, спиртов, обладает хорошими диэлектрическими свойствами.

Получается суспензионной или эмульсионной полимеризацией винилхлорида, а также полимеризацией в массе.

Применение

Применяется для электроизоляции проводов и кабелей, производства листов, труб преимущественно хлорированный поливинилхлорид, пленок, пленок для натяжных потолков, искусственных кож, поливинилхлоридного волокна, пенополивинилхлорида, линолеума, обувных пластикатов, мебельной кромки и т. д. Также применяется для производства грампластинок т. н. виниловых, профилей для изготовления окон и дверей.

Поливинилхлорид также часто используется в одежде и аксессуарах для создания подобного коже материала, отличающегося гладкостью и блеском. Такая одежда широко распространена в альтернативных направлениях моды, среди участников готической субкультуры и сторонников сексуального фетиша.

Поливинилхлорид используют как уплотнитель в бытовых холодильниках, вместо относительно сложных механических затворов. Это дало возможность применить магнитные затворы в виде намагниченных эластичных вставок, помещаемых в баллоне уплотнителя.

Каучуки — натуральные или синтетические материалы, характеризующиеся эластичностью, водонепроницаемостью и электроизоляционными свойствами, из которых путём специальной обработки получают резину. Природный каучук получают из жидкости молочно-белого цвета, называемой латексом, — млечного сока каучуконосных растений.

Синтетические каучуки — синтетические полимеры, способные перерабатываться в резину путем вулканизации, составляют основную массу эластомеров. Синтетический каучук — высокополимерный, каучукоподобный материал. Его получают полимеризацией или сополимеризацией бутадиена, стирола, изопрена, неопрена, хлорпрена, изобутилена, нитрила акриловой кислоты. Подобно натуральным каучукам, синтетические имеют длинные макромолекулярные цепи, иногда разветвленные, со средним молекулярным весом, равным сотням тысяч и даже миллионам. Полимерные цепи в синтетическом каучуке в большинстве случаев имеют двойные связи, благодаря которым при вулканизации образуется пространственная сетка, получаемая при этом резина, приобретает характерные физико-механические свойства.

Обычно приняты классификация и наименование каучуков по мономерам

использованным для их получения изопреновые, бутадиеновые и т. д. или по характерной группировке атомам в основной цепи или боковых группах уретановые, полисульфидные и др. Синтетические каучуки также подразделяют по признакам, например, по содержанию наполнителей наполненные и ненаполненные, по молекулярной массе консистенции и выпускной форме твердые, жидкие, порошкообр.. Часть синтетических каучуков выпускают в виде водных дисперсий — синтетических латексов. Особую группу каучуков составляют — термоэластопласты.

Некоторые виды синтетических каучуков например полизобутилен, силиконовый каучук представляют собой полностью предельные соединения, поэтому для их вулканизации применяют органические перекиси, амины и др. вещества. Отдельные виды синтетических каучуков по ряду технических свойств превосходят натуральный каучук.

По области применения синтетические каучуки разделяют на каучуки общего и специального назначения. К каучукам общего назначения относят каучуки с комплексом достаточно высоких технических свойств прочность, эластичность и др., пригодных для массового изготовления широкого круга изделий. К каучукам специального назначения относят каучуки с одним или несколькими свойствами, обеспечивающими выполнение специальных требований к изделию и иго работоспособности в часто экстремальных условиях эксплуатации.

Каучуки общего назначения: изопреновые, бутадиеновые, бутадиенстирольные и др.

Каучуки специального назначения: бутилкаучук, этиленпропиленовые, хлорпреновые, фторкаучуки, уретановые и др.

В технике из каучуков изготовляют шины для автотранспорта, самолётов, велосипедов; каучуки применяют для электроизоляции, а также производства промышленных товаров и медицинских приборов.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: