Классификация белков. Глобулярные и фибриллярные белки.Простые и сложные белки

Обширный класс белковых веществ в зависимости от химического состава делят на простые и сложные белки. Простые белки построены из остатков аминокислот и при гидролизе распадаются соответственно только на свободные аминокислоты.

Сложные белки – это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого простетической группой. При гидролизе сложных белков, помимо свободных аминокислот, освобождается небелковая часть или продукты еераспада.

По форме частиц белки делятся на фибриллярные и глобулярные. Фибрилярные белки имею большое отношение длины к диаметру.Молекулы нитевидны и собраны в пучки, которые далее образуют волокна(фиброин шелка,кератин волос,коллаген кожи). Глобулярные(корпускулярные) белки имеют невысокое отношение длины к диаметру,имею палочкообразную форму молекулы.

По отношению к условно выбранным растворителям среди белков различают протеиноиды,альбумины,глобулины,проламины. К протеиноидам относят белки не растворяющиеся в обычных растворителях:вода,солевые и спиртовые смеси(почти все фибриллярные белки).Однако в специфических агентах хорошо растворяются.К альбуминам относят белки,которые отлично растворяются в воде и крепких солевых растворах(молекулярная масса –40000–70000. К глобулинам принадлежат белки,не растворимые в воде, но растворимые в солевых растворах умеренных концентраций(мол.масса-150000).Альбумины и глобулины широко распространены в органах и тканях животных. Проламины растворяются в 60-80% водном растворе этилового спирта,белки растительного происхождения(белки пшеницы,рожи,риса). Протамины и гистоны. Протамины обладают выраженными основными свойствами, обусловленными наличием в их составе от 60 до 85% аргинина. Протамины хорошо растворимы в воде, изоэлектрическая точка их водных растворов находится в щелочной среде. Гистоны также являются белками основного характера. В их состав входят лизин и аргинин, содержание которых, однако, не превышает 20–30%. Молекулярная масса гистонов намного больше нижнего предела молекулярной массы белков.

10.Общие представления о ферментах. Химическая природа ферментов.Активный центр.Кофермент и простетические группы. Ферменты, или энзимы, представляют собой высокоспециализированный

класс веществ белковой природы, используемый живыми организмами для осуществления с высокой скоростью многих тысяч взаимосвязанных химических реакций. Ферменты обеспечивают осуществление таких важнейших процессов жизнедеятельности, как экспрессия (реализация) наследственной информации, биоэнергетика, синтез и распад биомолекул (обмен веществ).Ферменты чрезвычайно эффективны и проявляют в миллионы и миллиарды раз более высокую каталитическую активность в условиях умеренной температуры (температура тела), нор-

мального давления и в области близких к нейтральным значениям рН среды. Ферменты отличаются высокой специфичностью действия в отношении как химической природы субстрата, так и типа реакции, т.е. каждый

фермент катализирует в основном только определенную химическую реакцию.Ферменты не участвуют в образовании продуктов реакции и не расходуются.

Химическая природа ферментов. В зависимости от типа катализируемой реакции все ферменты подразделяются на 6 классов:

  • Ферменты, катализирующие окислительно-восстановительные реакции оксидоредуктазы;
  • Ферменты переноса различных группировок (метильных, амино- и фосфогрупп и другие) — трансферазы.
  • Ферменты, осущевствляющие гидролиз химических связей — гидролазы
  • Ферменты не гидролитического отщепления от субстрата различных группировок (NH3, CO2,H2O и другие) — лиазы.
  • Ферменты, ускоряющие синтез связей в биологических молекулах при участии доноторов энергии, например АТФ, — лигазы.
  • Ферменты, катализирующие превращение изомеров друг в друга, — изомеразы.

ОКСИДОРЕДУКТАЗЫ – ферменты, катализирующие окислительно-восстановительные процессы в организме. Они осущевствляют перенос водорода и электронов и по своим привиальным названием известны как дегидрогеназы, оксидазы и пероксидазы. Эти ферменты отличаются тем, что имеют специфические коферменты и простетические группы. Их подразделяют на функциональные группы доноров, от которых они принимают водород или электроны, и акцепторов, на которые они их передают (на СН-ОН группу, СН- NH группу, C-NH группу и другие).ТРАНСФЕРАЗЫ – ферменты, переносящие атомные группы (в зависимости от того, перенос какой группы они осуществляют, их соответственно называют). Среди них известны ферменты осуществляющие транспорт больших остатков, например гликозилтрансферазы и другие. Трансферазы благодаря разнообразию переносимых ими остатков принимают участие в промежуточном обмене веществ.ГИДРОЛАЗЫ – ферменты, катализирующие гидролитическое расщепление различных субстратов (при участии молекул воды). В зависимости от этого среди них различают эстеразы, расщипляющие сложноэфирную связь между карбоновыми кислотами (липаза) тиоловых эфиров, фосфоэфирную связь и так далее; гликозидазы, расщепляющие гликозидные связи, пептид — гидролазы, действует на пептидную связь и другие.ЛИАЗЫ. К этой группе относятся ферменты, способные отщеплять различные группы от субстрата не гидролитическим путём с образованием двойных связей или, напротив, присоединять группы к двойной связи. При расщеплении образуется Н2О или СО2 или большие остатки- например ацетил- СоА. Лиазы играют весьма важную роль в процессе обмена веществ.ИЗОМЕРАЗЫ – ферменты, катализирующие превращение изомерных форм друг в друга, то — есть осуществляющие внутримолекулярное превращение различных групп. К ним относятся не только ферменты, стимулирующие реакции взаимных переходов оптических и геометрических изомеров, но и такие, которые могут способствовать превращению альдоз в кетозы или перемещению эфирной связи и другие.ЛИГАЗЫ. Раньше эти ферменты не отделяли от лиаз, так как реакция последних часто идёт в двух направлениях, однако недавно было выяснено, что синтез и распад в большинстве случаев происходит под влиянием различных ферментов, и на этом основании выделен отдельный класс лигаз (синтетаз). Ферменты, обладающие двойным действием, получили название бифункциональных. Лигазы принимают участие в реакции соединения двух молекул, то есть синтетических процессах, сопровождающихся расщеплением макроэнергитических связей АТФ или других макроэргов.

Строение ферментов.Кофермент и простетические группы.Активный центр. По строению ферменты могут быть однокомпонентными, простыми белками, и двухкомпонентными, сложными белками. Во втором случае в составе фермента обнаруживается добавочная группа небелковой природы. Чаще всего добавочную группу, прочно связанную, не отделяемую от белковой части (апофермента), называют простетической группой; в отличие от этого добавочную группу, легко отделяющуюся от апофермента и способную к самостоятельному существованию, обычно именуют коферментом. Характерной особенностью двухкомпонентных ферментов является то, что ни белковая часть, ни добавочная группа в отдельности не обладают заметной каталитической активностью. Только их комплекс проявляет ферментативные свойства. Иначе обстоит дело у однокомпонентных ферментов, не имеющих добавочной группы, которая могла бы входить в непосредственный контакт с преобразуемым соединением. Эту функцию выполняет часть белковой молекулы, называемая каталитическим центром. Предполагают, что каталитический центр однокомпонентного фермента представляет собой уникальное сочетание нескольких аминокислотных остатков, располагающихся в определенной части белковой молекулы.

Строение фермента.

Кроме каталитического центра, образованного сочетанием аминокислотных радикалов или присоединением кофермента, у ферментов различают еще два центра: субстратный и аллостерический. Под субстратным центром понимают участок молекулы фермента, ответственный за присоединение вещества (субстрата), подвергающегося ферментативному превращению. Часто этот участок называют 'якорной площадкой' фермента, где, как судно на якорь, становится субстрат. В реальных ферментах субстратный центр может совпадать (или перекрываться) с каталитическим центром. Более того, каталитический центр может окончательно формироваться в момент присоединения субстрата. Поэтому часто говорят об активном центре фермента, представляющем сочетание первого и второго. Активный центр у ферментов располагается на две щели при двухъядерной структуре, например у лизоцима и рибонуклеазы, или на дне глубокой впадины, как у химотрипсиногена. Аллостерический центр представляет собой участок молекулы фермента, в результате присоединения к которому определенного низкомолекулярного (а иногда - и высокомолекулярного) вещества изменяется третичная структура белковой молекулы. Вследствие этого изменяется конфигурация активного центра, сопровождающаяся либо увеличением, либо снижением каталитической активности фермента. Это явление лежит в основе так называемой аллостерической регуляции каталитической активности ферментов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: