Усиливающие цепи. Тормозные цепи

Тормозные цепи, виды торможения. Торможение, как и возбуждение, - активный процесс, оно возникает в результате сложных физико-химических изменений в тканях. Благодаря процессу торможения достигается ограничение распространения возбуждения в ЦНС и обеспечивается координация рефлекторных актов, внешне этот процесс проявляется ослаблением функции какого-либо органа.

 

Открытие торможения в ЦНС было сделано основоположником русской физиологии И. М. Сеченовым. В 1862 г. Им были проведены классические опыты, получившие название «центральное торможение». И. М. Сеченов на зрительные бугры лягушки, отделенные от больших полушарий головного мозга, помещал кристаллик хлорида натрия (поваренная соль) и наблюдал при этом увеличение времени спинномозговых рефлексов. После устранения раздражителя рефлекторная деятельность спинного мозга восстанавливалась. Результаты этого опыта позволили И. М. Сеченову сделать заключение о том, что в центральной нервной системе наряду с процессом возбуждения развивается и процесс торможения, способный угнетать рефлекторные акты организма.

К настоящему времени анализ тормозных явлений в ЦНС позволил выделить две формы разновидности торможения: постсинаптическое и пресинаптическое.

Постсинаптическое торможение развивается на постсинаптических мембранах межнейронных синапсов и связано с гиперполяризацией постсинаптической мембраны под влиянием медиаторов, которые выделяются при возбуждении специальных тормозных нейронов. При этом локально возникающая на постсинаптической мембране гиперполяризация - тормозной постсинаптический потенциал (ТПСП) – затрудняет электротоническое распространение возбуждающих постсинаптических потенциалов (ВПСП) от других синапсов, к аксонному холмику. В результате в зоне аксонного холмика не происходит выведение мембранного потенциала на критический уровень. Потенциал действия не образуется, нейрон не возбуждается.

Постсинаптическое торможение активно используется в нейронных сетях, и в зависимости от вариантов связывания нейронов друг с другом выделяют несколько его видов: реципрокное (прямое), параллельное, возвратное, латеральное.

Рис. 3. Разновидности постсинаптического торможения: А – реципрокное, Б – возвратное, В – параллельное, Г- латеральное. Темные нейроны – возбуждающие, светлые – тормозные.

Реципрокное торможение – это взаимное (сопряженное) торможение центров антагонистических рефлексов, обеспечивающее координацию этих рефлексов. Классический пример реципрокного торможения - это торможение мотонейронов мышц-антагонистов у позвоночных. Торможение осуществляется с помощью специальных тормозных вставочных нейронов. При активации путей, возбуждающих, например, мотонейроны мышц-сгибателей, мотонейроны мышц-разгибателей тормозятся импульсами вставочных клеток.

 

Возвратное торможение - это торможение нейронов собственными импульсами, поступающими по возвратным коллатералям к тормозным клеткам. Возвратное торможение наблюдается, например, в мотонейронах спинного мозга позвоночных. Эти клетки отдают возвратные коллатерали в мозг к тормозным вставочным клеткам Реншоу, которые имеют синапсы на этих же мотонейронах. Торможение обеспечивает ограничение ритма мотонейронов, позволяющее чередовать сокращение и расслабление скелетной мышцы, что важно для нормальной работы двигательного аппарата.

Параллельное торможение– играет сходную с возвратным роль, но в этом случае возбуждение блокирует само себя, посылая тормозной сигнал на нейрон который одновременно и активирует. Это возможно, если возбуждающий импульс сам не должен вызвать возбуждения на нейроне-мишени, но его роль важна при пространственной суммации, в комбинации с другими сигналами.

Латеральное торможение– это торможение нервных клеток, расположенных по соседству с активной, которое этой клеткой и инициируется. При этом вокруг возбужденного нейрона возникает зона, в которой развивается очень глубокое торможение. Латеральное торможение наблюдается, например, в конкурирующих сенсорных каналах связи. Оно наблюдается у соседних элементов сетчатки позвоночных, а также в их зрительных, слуховых и других сенсорных центрах. Во всех случаях латеральное торможение обеспечивает контраст, т. е. выделение существенных сигналов или их границ из фона.

Пресинаптическое торможениеразвивается в аксо-аксональных синапсах, образованных на пресинаптических окончаниях нейрона.

В основе пресинаптического торможения лежит развитие медленной и длительной деполяризации пресинаптического окончания, что и приводит к развитию торможения. В деполяризованном участке нарушается процесс распространения возбуждения и поступающие к нему импульсы, не имея возможности пройти зону деполяризации в обычном количестве и обычной амплитуде, не обеспечивают выделения достаточного количества медиатора – нейрон не возбуждается.

Деполяризацию пресинаптическойтерминали вызывают специальные тормозные вставочные нейроны, аксоны которых и образуют синапсы на пресинаптических окончаниях аксона-мишени.

Разновидности пресинаптического торможения изучены недостаточно, вероятно они те же, что и для постсинаптического торможения. Точно известно о наличии параллельного и латерального пресинаптического торможения (рис. 4).

 

 

Рис. 4. Разновидности пресинаптического торможения: А – параллельное, Б – латеральное. Темные нейроны – возбуждающие, светлые – тормозные.

В реальной действительности взаимоотношения возбуждающих и тормозных нейронов значительно сложнее, чем представлено на рисунках, тем не менее, все варианты пре- и постсинаптического торможения можно объединить в две группы. Во-первых, когда блокируется собственный путь самим распространяющимся возбуждением с помощью вставочных тормозных клеток (параллельное и возвратное торможение), во-вторых, когда блокируются другие нервные элементы под влиянием импульсов от соседних возбуждающих нейронов с включением тормозных клеток (латеральное и прямое торможение).

Кроме того, тормозные клетки сами могут быть заторможены другими тормозными нейронами, это может облегчить распространение возбуждения.

Роль процесса торможения. Оба известных вида торможения со всеми их разновидностями выполняют, прежде всего, охранительную роль. Отсутствие торможения привело бы к истощению медиаторов в аксонах нейронов, утомлению, истощению и прекращению деятельности ЦНС. Торможение играет важную роль в обработке поступающей в ЦНС информации. Особенно ярко выражена эта роль у пресинаптического торможения. Оно более точно регулирует процесс возбуждения, поскольку этим торможением могут быть полностью заблокированы отдельные нервные волокна. К одному возбуждающему нейрону могут приходить сотни и тысячи различных импульсов по разным путям, но число дошедших до нейрона импульсов определяется пресинаптическим торможением. Поскольку блокада торможения ведет к широкой иррадиации возбуждения и судорогам, следует признать, что торможение является важным фактором обеспечения координационной деятельности ЦНС.

 

Усиливающие цепи и механизмы усиления. Нейронные сети имеют не только тормозные механизмы, препятствующие распространению возбуждения, но и системы, усиливающие приходящий к ним сигнал.

Самовозбуждающиеся нервные цепи(цепи с положительной обратной связью) (рис.5). Некоторые данные свидетельствуют о том, что в мозгу животных и человека существуют замкнутые самовозбуждающиеся цепочки нейронов, в которых нейроны соединены синапсами возбуждающего действия. Возникнув в ответ на внешний сигнал, возбуждение в такой цепочке циркулирует, иначереверберирует, до тех пор, пока или какой-либо внешний тормоз не выключит одно из звеньев цепи, или в ней не наступит утомление. Выходные пути от такой цепочки (ответвляющиеся по коллатералям аксонов нервных клеток - участников цепи) во время работы передают равномерный поток импульсов, создающий ту или иную настройку в нервных клетках-мишенях. Ее функции могут состоять в том, чтобы обеспечивать длительное поддержание индуцированной однажды активности.

 
 

 


Рис.5. Самовозбуждающаяся нервная цепочка

Таким образом, самовозбуждающаяся цепочка, пока она работает, как бы «помнит» тот краткий сигнал, который включил в ней циркуляцию (реверберацию) импульсов. Считают, что это возможный механизм (или один из механизмов) краткосрочной памяти, однако этому практически нет экспериментальных доказательств.

Синаптическаяпотенциация — увеличение амплитуды постсинаптического потенциала, если интервал между последовательным возникновением потенциалов действия в пресинаптической мембране невелик, то есть происходит частая и ритмическая активация синапса. Явление потенциации связывают с накоплением ионов кальция в пресинаптическом окончании, который дополнительно вбрасывается туда при каждом новом стимуле и не успевает полностью удаляться между частыми стимулами. Вследствие этого, каждый новый пресинаптический потенциал вызывает высвобождение большего числа квантов медиатора.

Такую же природу имеет и посттетаническаяпотенциация. В этом случае увеличение числа квантов медиатора, высвобождаемых нервным импульсом, после предшествующего ритмического раздражения приводит к увеличению синаптической реакции нейрона на одиночное раздражение пресинаптических путей. Посттетаническаяпотенциация может длиться от нескольких минут до нескольких часов в различных структурах мозга. Предполагают, что постсинаптическая потенциация играет важную роль в пластических перестройках функций синапсов, и лежит в основе механизмов организации условных рефлексов и памяти. Например, особенно длительная посттетаническая потенциация обнаружена в гиппокампе – структуре, которая, играет важную роль в явлениях памяти и научения.

Ритмическая стимуляция может приводить и к снижению активности синапсов. Процесс снижения постсинаптических потенциалов во время или по окончании тетанической стимуляции по сравнению с исходной амплитудой называется синаптической депрессией; по аналогии с потенциацией, различают тетаническую и посттетаническую депрессию. Возможно, синаптическая депрессия имеет место во многих участках нервной системы и является нейронным коррелятом привыкания (габитуации). У беспозвоночных габитуация простых поведенческих реакций прямо соответствует депрессии участвующих синапсов; то же самое относится и к флексорному рефлексу у кошки. Таким образом, синаптическая депрессия, так же как синаптическаяпотенциация, составляет элементарный процесс научения.

 

80. Гипоталамо-гипофизарная система +

81. Антидиуретический гормон, окситоцин. Статины и либерины.

Важную роль в регуляции функций эндокринных желез играет гипоталамо-гипофизарная система. Функция большинства желез внутренней секреции регулируется гормонами передней доли гипофиза (аденогипофиза). На высвобождение этих гормонов в свою очередь влияют гормоны нейронов гипофизотропной зоны медиальной области гипоталамуса, которые оказывают либо стимулирующее, либо тормозное действие на гипофиз и называются соответственно рилизинг-факторы и ингибирующие факторы. Рилизинг-факторы высвобождаются из нервных отростков в области срединного возвышения и через гипоталамо-гипофизарную систему с кровью поступают к аденогипофизу. Принцип регуляции заключается в том, что при повышении содержания в плазме гормонов периферических эндокринных желез уменьшается выброс соответствующего рилизинг-фактора в кровеносные сосуды медиальной области гипоталамуса. Регуляция по принципу отрицательной обратной связи, в которой участвуют медиальный гипоталамус, гипофизи периферические эндокринные железы, действует даже в отсутствии влияний со стороны ЦНС. Регуляция сохраняется после полного отделения медиальной области гипоталамуса от остальных отделов ЦНС. Роль ЦНС заключается в приспособлении этой регуляции к внутренним и внешним потребностям организма. Например, при стрессе возрастает секреция кортизола корой надпочечников в результате того, что увеличивается активность нейронов медиальной области гипоталамуса, что ведет к усиленному выделению рилизинг-фактора в срединном возвышении.

В клетках и ядрах гипоталамуса выделяются:

· Гипоталамические гормоны – либерины и статины, которые регулируют гормонпродуцирующую функцию гипофиза.

· Тиреолиберин – стимулирует выработку тиротропина в гипофизе.

· Гонадолиберин – стимулирует выработку в гипофизе гонадотропных гормонов.

· Кортиколиберин – стимулирует выработку в гипофизе кортикотропина.

· Соматолиберин – стимулирует выработку в гипофизе гормона роста – соматотропина.

· Соматостатин – угнетает выработку в гипофизе гормона роста.

Гипофиз расположен на основании головного мозга и прикрепляется к мозгу тонким стеблем. По этому стеблю гипофиз связан с гипоталамусом. Гипофиз состоит из передней и задней долей. Промежуточная доля у человека недоразвита. В передней доле гипофиза, ее называют аденогипофиз, производится шесть собственных гормонов. В задней доле гипофиза, называемой нейрогипофиз, накапливаются два гормона гипоталамуса – окситоцин и вазопрессин.

Гормоны, которые производит передняя доля гипофиза:

· Пролактин. Этот гормон стимулирует лактацию (образование материнского молока в молочных железах).

· Соматотропин или гормон роста – регулирует рост и участвует в обмене веществ.

· Гонадотропины – лютеинизирующий и фолликулостимулирующий гормоны. Они контролируют половые функции у мужчин и женщин.

· Тиротропин. Тиротропный гормон регулирует работу щитовидной железы.

· Адренокортикотропин. Адренокортикотропный гормон стимулирует выработку глюкокортикоидных гормонов корой надпочечников.

Соматотропин. или гормон роста, обусловливает рост костей в длину, ускоряет процессы обмена веществ, что приводит к уси­лению роста, увеличению массы тела. Недостаток этого гормона проявляется в малорослости (рост ниже 130 см), задержке поло­вого развития; пропорции тела при этом сохраняются.

Избыток гормонов роста в детском возрасте ведет к гигантиз­му. В медицинской литературе описаны гиганты, имевшие рост 2 м 83 см и даже более (3 м 20 см). Гиганты характеризуются длинными конечностями, недостаточностью половых функций, по­ниженной физической выносливостью.

Иногда избыточное выделение гормона роста в кровь начина­ется после полового созревания, т. е. когда эпифизарные хрящи уже окостенели и рост трубчатых костей в длину уже невозможен. Тогда развивается акромегалия: увеличиваются кисти и стопы, кости лицевой части черепа (они окостеневают позже), усиленно растут нос, губы, подбородок, язык, уши, голосовые связки утол­щаются, отчего голос становится грубым; увеличивается объем сердца, печени, желудочно-кишечного тракта.

Адренокортикотропный гормон (АКТГ) оказывает влияние на деятельность коры надпочечников. Увеличение количества АКТГ в крови вызывает гиперфункцию коры надпочечников, что при­водит к нарушению обмена веществ, увеличению количества саха­ра в крови. Развивается болезнь Иценко—Кушинга с характер­ным ожирением лица и туловища, избыточно растущими волосами на лице и туловище; нередко при этом у женщин растут борода и усы; повышается артериальное давление; разрыхляется костная ткань, что ведет подчас к самопроизвольным переломам костей.

В аденогипофизе образуется также гормон, необходимый для нормальной функции щитовидной железы (тиреотропин). Тиреотропин, воздействуя на специфические рецепторы в щитовидной железе, стимулирует выработку и активацию тироксина. Он активирует аденилатциклазу и увеличивает потребление йода клетками железы. Последующее увеличение уровня сАМР обусловливает действие ТТГ на биосинтез трийодтиронина (Т3) и тироксина (Т4) (синтез длится около минуты), которые являются важнейшими гормонами роста.

Несколько гормонов передней доли гипофиза оказывают влия­ние на функции половых желез. Это гонадотропные гормоны. Одни из них стимулируют рост и созревание фолликулов в яични­ках (фолитропин), активируют сперматогенез. Под влиянием лю­тропина у женщин происходит овуляция и образование желтого тела; у мужчин он стимулирует выработку тестостерона. Пролак­тин оказывает влияние на выработку молока в молочных желе­зах; при его недостатке продукция молока снижается.

Из гормонов промежуточной доли гипофиза наиболее изучен меланофорный гормон, или меланотропин, регулирующий окраску кожного покрова. Этот гормон действует на клетки кожи, содер­жащие зернышки пигмента. Под влиянием гормона эти зернышки распространяются по всем отросткам клетки, вследствие чего ко­жа темнеет. При недостатке гормона окрашенные зернышки пиг­мента собираются в центре клеток, кожа бледнеет.

Во время беременности в крови содержание меланофорного гормона увеличивается, что вызывает усиленную пигментацию от­дельных участков кожи (пятна беременности).

Под влиянием гипоталамуса из задней доли гипофиза выде­ляются гормоны антидиуретин, или вазопрессин, и окситоцин. Окситоцин стимулирует гладкую мускулатуру матки при родах. Он также оказывает стимулирующее влияние на выделение мо­лока из молочных желез.

Наиболее сложным действием обладает гормон задней доли гипофиза, названный антидиуретическим (АДГ); он усиливает об­ратное всасывание воды из первичной мочи, а также влияет на солевой состав крови. При уменьшении количества АДГ в крови наступает несахарное мочеизнурение (несахарный диабет), при котором в сутки отделяется до 10—20 л мочи. Вместе с гормо­нами коры надпочечников АДГ регулирует водно-солевой обмен в организме.

82. Надпочечники. Гормоны надпочечников

Надпочечники состоят из:

· мозгового (внутреннего слоя)

· коркового вещества или коры надпочечников.

Размеры надпочечника у взрослого человека 4х2х0,3 см. Вес надпочечника от 6 до 7 г.

Надпочечники это эндокринные железы, которые расположены над верхним полюсом каждой почки. Верхняя часть коры надпочечника представляет собой клубочковую зону. В ней образуются минералокортикоиды – альдостерон. Большую часть коры надпочечников занимает пучковая зона. В пучковой зоне происходит синтез глюкокортикоидов.

Внутренний слой коры надпочечника называется сетчатой зоной и синтезирует половые гормоны. Во внутреннем, мозговом слое надпочечника содержатся я адреналин и норадреналин. Гормоны, продуцируемые надпочечниками называются кортикостероиды. Все они синтезируются из холестерина. Скорость синтеза гормонов и их выделение в кровь контролируется гормоном гипофиза адренокортикотропином.

Глюкокортикоиды. Основным глюкокортикоидом в организме человека является кортизол, который синтезируется в пучковой зоне надпочечника. Менее активные глюкокортикоиды:

· кортизон

· кортикостерон

· 11- дезоксикортизол

· 11- дегидрокортикостерон.

Транспортируются по крови глюкокортикоиды при помощи специальных белков-переносчиков. Выводятся из организма в основном печенью. Глюкокортикоиды принимают участие в регуляции обмена веществ в организме. Они увеличивают распад белка, повышают концентрацию глюкозы в крови, уменьшают образование жиров и изменяют распределение жировой клетчатки в организме, увеличивая количество свободных жиров в крови.

Глюкокортикоиды оказывают противовоспалительное действие, снижая все компоненты воспалительных реакций в организме. Влияют на иммунитет. Они участвуют в регуляции уровня артериального давления, активируют работу почек. При избытке глюкокортикоидов возникает атрофия лимфатических узлов. Глюкокортикоиды влияют на обмен углеводов, белков и жиров, усиливают процессы образования глюкозы из белков (глюконеогенез), а также откладывание гликогена в печени, являются антагонистами инсулина по регуляции углеводного обмена. ГКС вызывают распад тканевых белков, задерживают включения аминокислот в белки организма и ускоряют процесс выделения азота (катаболический эффект). Глюкокортикоиды способны проявлять противовоспалительное действие. Это связано с тем, что названные гормоны снижают проницаемость стенки сосудов за счет снижения активности фермента гиалуронидазы, блокируют секрецию серотонина и гистамина, кининов и систему плазмин - фибринолизин. Под влиянием глюкокортикоидов производятся липокортины, тормозящие влияние фосфолипазы А2 и тем самым подавляют образование из арахидоновой кислоты простагландинов и лейкотриенов, стимулирующих воспалительный процесс. ГКС осуществляют значительное влияние на клеточный и гуморальный иммунитет. Доказано, что выше (фармакологические) дозы гидрокортизона обусловливают обратное развитие (инволюцию) пидгрудиннои железы и лимфатических узлов, подавляют выработку антител, тормозящие реакцию взаимодействия чужеродного белка (антигена) с антителом. При этом в периферической крови уменьшается количество лимфоцитов и эозинофилов. Именно иммуносупрессорной действие глюкокортикоидов используется для лечения аллергических заболеваний (например, бронхиальной астмы). ГКС с другими гормонами (АКТГ) способствуют адаптации организма к новым условиям существования, а также к воздействию различных неблагоприятных факторов (резко выраженные холод и жара, кислородное голодание, травмы, эмоциональное перенапряжение и т.д.). Поэтому их называют защитными (адаптивными) гормонами.

Минералокортикоиды. К минералокортикоидам относятся:

· альдостерон

· дезоксикортикостерон

· 18- оксикортикостерон.

Наиболее активный из них альдостерон. Он регулирует обратное всасывание воды в канальцах почек, снижает выведение натрия и усиливает выведение калия из организма. Контроль синтеза альдостерона осуществляется ренин-ангиотензиновой системой, уровнем калия в крови и адренокортикотропным гормоном гипофиза. Минералокортикоиды участвуют в регуляции минерального обмена (баланса электролитов). Активным минералокортикоиды является альдостерон. Под его влиянием усиливается реабсорбция Na + в канальцах почек и уменьшается реабсорбция К +, что приводит к задержке Na + и Сl-в организме и увеличение выделения К +, Н +.
В отличие от глюкокортикоидов, минералокортикоиды способствуют развитию воспалительных процессов. Это объясняется их способностью к повышению проницаемости капилляров и серозных оболочек. Минералокортикоиды участвуют также в регуляции тонуса кровеносных сосудов. Доказано, что альдостерон повышает тонус сосудов и способствует повышению артериального давления. Избыток альдостерона в организме ведет к повышению содержания натрия и снижение уровня калия, к развитию алкалоза и увеличение объема внеклеточной жидкости. Напротив, недостаточность альдостерона в организме обусловливает потерю натрия, дегидратацию тканей и снижение АД (гипотензия).

В сетчатом слое надпочечников образуются половые гормоны – андрогены, эстрогены и небольшое количество прогестерона. Эти гормоны имеют значение для развития половых органов в раннем детском возрасте и появления вторичных половых признаков в тот период, когда внутренняя секреторная функция половых желез еще незначительна. Кроме специфического воздействия, половые гормоны (эстрогены) оказывают еще и антисклеротическое эффект, прежде у женщин, благодаря высокой их концентрации. Они (особенно андрогены) также способствуют обмену белков, стимулируя их синтез в организме. Вместе с этим половые гормоны влияют на эмоциональный статус и поведение человека.

Катехоламины. В мозговом слое надпочечника образуются катехоламины:

· дофамин

· адреналин

· норадреналин.

Катехоламины являются нейромедиаторами, которые служат передатчиками нервного импульса в симпатической нервной системе. Синтез их происходит из аминокислоты тирозина. Катехоламины также принимают участие в регуляции секреции некоторых гормонов в организме, влияют на обмен веществ.

Адреналин обладает широким спектром действия на организм. Он влияет на углеводный обмен, усиливает распад гликогена, вызывая уменьшение его запасов в печени и мышцах (есть в этом антагонистом-инсулина), что приводит к увеличению содержания глюкозы в крови (адреналовая гипергликемия). Адреналин имеет липолитическое действие - повышает содержание свободных жирных кислот в крови. Под влиянием адреналина усиливаются энергетический обмен, в том числе и основной, а также образование тепла.

Адреналин вызывает ускорение и усиление сердечных сокращений, улучшает проведение возбуждения в сердце (особенно сильно адреналин влияет на ослабленную сердечную мышцу), сужает артериолы кожи, органов брюшной полости, повышая артериальное давление. Адреналин подавляет сокращение гладких мышц желудка и кишечника, вызывает при раздражении ослабление бронхиальных мышц, вследствие чего просвет бронхов и бронхиол расширяется. Вместе с тем адреналин вызывает укорочение радиальных мышц радужной оболочки глаза, в результате чего зрачки расширяются. Под влиянием адреналина также сокращаются пиломоторы кожи, что приводит к появлению так называемой гусиной кожи и поднятия волос.
Под влиянием адреналина повышается работоспособность скелетных мышц (особенно, если они устали), возбудимость рецепторов (сетчатки, слухового и вестибулярного аппарата и др.), благодаря чему улучшается восприятие организмом внешних стимулов. При некоторых состояниях организма (охлаждение, эмоциональное возбуждение, кровопотеря, кислородный голод, гипогликемия и др.). Резко увеличиваются образование и выделение адреналина в кровь. Поэтому адреналин образно называют «гормоном тревоги», который препятствует возникновению значительных, опасных для жизни изменений в организме. Возбуждение симпатической нервной системы сопровождается повышением поступления в кровь адреналина и норадреналина. Эти катехоламины продлевают эффекты симпатической нервной системы. Итак, на функции органов и систем адреналин влияет так же, как симпатическая нервная система.
Адреналин в крови и тканях быстро разрушается под действием ферментов. При этом образуются продукты, которые не являются гормонально активными. Поэтому адреналин относят к гормонам с коротким периодом действия.

Таким образом, адреналин играет важную роль в приспособительных, защитных реакциях организма, может вызывать экстренную перестройку функций, направленную на повышение работоспособности организма в чрезвычайных условиях.

Норадреналин имеет признаки гормона и медиатора (трансмиттера), так выполняет функции передатчика возбуждения симпатических нервных окончаний на эффектор, а также в нейронах ЦНС.

83. Половые железы. Гормоны половых желез.

Половые железы (семенные железы у мужчин и яичники у женщин) относятся к железам, имеющие смешанную функцию. За счет внешнесекреторной функции этих желез образуются мужские и женские половые клетки - сперматозоиды и яйцеклетки. Инкреторная функция проявляется образованием и выделением мужских и женских половых гормонов, которые непосредственно поступают в кровь.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: