Обработка сенсорной информации в проводниковых отделах

Сенсорная информация передается от рецепторов в высшие отделы мозга по двум основным путям нервной системы — специфическим и неспецифическим. Специфические проводящие пути составляют один из трех основных функциональных блоков мозга — блок приема, переработки и хранения информации. Это классические афферентные пути зрительной, слуховой, двигательной и др. сенсорных систем. В обработке этой информации участвует и неспецифическая система мозга, не имеющая прямых связей с периферическими рецепторами, но получающая импульсы по коллатералям от всех восходящих специфических систем и обеспечивающая их широкое взаимодействие.

Анализ получаемых раздражений происходит во всех отделах ceнсорных систем. Наиболее простая форма анализа осуществляется в результате выделения специализированными рецепторами раздражителей различиой модальности (свет, звук и пр.) из всех падающих на организм воздействий. При этом в одной сенсорной системе возможно уже более детальное выделение характеристик сигналов (цветоразличение фоторецепторами колбочек и др.).

Важной особенностью в работе проводникового отдела сенсорных систем является дальнейшая обработка афферентной информации, которая заключается, с одной стороны, в продолжающемся анализе свойств раздражителя, а с другой — в процессах их синтеза, в обобщении поступившей информации. По мере передачи афферентных импульсов на более высокие уровни сенсорных систем увеличивается число нервных клеток, которые реагируют на афферентные сигналы более сложно, чем простые проводники. Например, на уровне среднего мозга в подкорковых зрительных центрах имеются нейроны, которые реагируют на различную степень освещенности и обнаруживают движение, в подкорковых слуховых центрах — нейроны, извлекающие информацию о высоте тона и локализации звука, деятельность этих нейронов лежит в основе ориентировочного рефлекса на неожиданные раздражители.

Благодаря многим разветвлениям афферентных путей на уровне спинного мозга и подкорковых центров обеспечивается многократное взаимодействие афферентных импульсов в пределах одной сенсорной системы, а также взаимодействие между различными сенсорными системами (в частности, можно отметить чрезвычайно обширные взаимодействия вестибулярной сенсорной системы со многими восходящими и нисходящими путями). Особенно широкие возможности для взаимодействия различных сигналов создаются в неспецифической системе мозга, где к одному и тому же нейрону могут сходится (конвергировать) импульсы различного происхождения (от 30000 нейронов) и от разных рецепторов тела. Вследствие этого неспецифическая система играет большую роль в процессах интеграции функций в организме.

При поступлении в более высокие уровни нервной системы происходит расширение сферы сигнализации, приходящей от одного рецептора. Например, в зрительной системе сигналы одного рецептора связаны (через систему дополнительных нервных клеток сетчатки — горизонтальных и др.) с десятками ганглиозных клеток и могут, в принципе, передавать информацию любым корковым нейронам зрительной коры. С другой стороны, по мере проведения сигналов происходит сжатие информации. Например, одна ганглиозная клетка сетчатки объединяет информацию от сотни биполярных клеток и десятков тысяч рецепторов, т. е. такая информация поступает в зрительные нервы уже после значительной обработки, в сокращенном виде.

Существенной особенностью деятельности проводникового отдела сенсорных систем является передача без искажений специфической информации от рецепторов к коре больших полушарий. Большое количество параллельных каналов (в зрительном нерве 900000 волокон, в слуховом — 30000 волокон) помогает сохранить специфику передаваемого сообщения, а процессы бокового (латерального) торможения изолировать эти сообщения от соседних клеток и путей.

Одной из важнейших сторон обработки афферентной информации является отбор наиболее значимых сигналов, осуществляемый восходящими и нисходящими влияниями на различных уровнях сенсорных систем. В этом отборе участвует также неспецифический отдел нервной системы (лимбическая система, ретикулярная формация). Активируя или затормаживая многие центральные нейроны, он способствует отбору наиболее значимой для организма информации. В отличие от обширных влияний среднемозговой части ретикулярной формации, импульсация из неспецифических ядер таламуса воздействует лишь на ограниченные участки коры больших полушарий. Такое избирательное повышение активности небольшой территории коры имеет значение в организации акта внимания, выделяя на общем афферентном фоне наиболее важные в данный момент сообщения.

Тактильн. чувствт. ощущение, возникающее при действии на кожную поверхность различных механических стимулов. Т. ч. — разновидность осязания (См. Осязание); зависит от вида воздействия: прикосновения, давления, вибрации (ритмичного прикосновения). Тактильные стимулы воспринимаются свободными нервными окончаниями, нервными сплетениями вокруг волосяных фолликулов, тельцами Пачини (рис. 1 и 2), Мейснера и Меркеля дисками (см. Мейснера тельца, Меркеля клетки) и др. Несколько дисков Меркеля или телец Мейснера могут иннервироваться одним нервным волокном, составляя своеобразное тактильное образование. Инкапсулированные Рецепторы (типа телец Пачини и Мейснера) определяют порог Т. ч.: они возбуждаются при прикосновении и вибрации и быстро адаптируются. Ощущение давления возникает при возбуждении медленно адаптирующихся рецепторов (таких, как свободные нервные окончания). По сравнению с др. кожными ощущениями Т. ч. быстро уменьшается при длительном раздражении, так как в целом процессы адаптации в тактильных рецепторах развиваются весьма быстро. Наиболее дифференцированная Т. ч. возникает при раздражении кончиков пальцев рук, губ, языка, где располагается большое количество разнообразных механорецепторных структур. Корковая часть тактильного Анализатора представлена в постцентральной и передней эктосильвиевой извилинах.

Тактильная чувствительность обычно оценивается при помощи кусочка ватки. Больного с закрытыми глазами просят отмечать каждое прикосновение. Для картирования зон потери чувствительности можно слегка дотрагиваться кончиком пальца до тела пациента. Болевую чувствительность исследуют уколами булавкой с частотой примерно раз в секунду и одинаковой интенсивности, пациента просят различить прикосновение тупого или острого конца. При более частом покалывании эффекты могут наложиться и скрыть потерю чувствительности.

Зоны или уровни потери болевой чувствительности лучше всего диагностируются при сравнительном исследовании участков с нарушенной и нормальной чувствительностью, изменения подтверждаются нанесением слабых уколов в этих участках. Для исследования температурной чувствительности применяют пробирки или колбы, содержащие горячую и холодную воду; дно каждой из этих пробирок прикладывается попеременно к коже больного, которого просят определить, холоднее или теплее данная пробирка в сравнении с предыдущей. Более точные данные можно получить при использовании электронного оборудования для оценки чувствительности.

Методы исследования чувствительности разделяют на субъективные и объективные. Субъективные методы основаны на психофизиологическом изучении ощущения (абсолютные и дифференциальные пороги Ч.). Клиническое исследование Ч. (см. Обследование больного, неврологическое обследование) надо проводить в теплом и тихом помещении. Чтобы лучше сосредоточиться на восприятии и анализе ощущений, больной должен лежать с закрытыми глазами. Результаты исследования Ч. зависят от реакции больного, его внимания, сохранности сознания и др.

Болевую чувствительность исследуют уколом булавки или другим острым предметом; температурную — прикосновением к коже пробирками, наполненными прохладной (не выше 25°) и горячей (40—50°) водой. Более точно температурную Ч. можно исследовать с помощью термоэстезиометра, а болевую — алгезиметром Рудзита. Пороговую характеристику болевой и тактильной чувствительности можно получить при исследовании градуированными щетинками и волосками по методу Фрея. Тактильную Ч. исследуют легким прикосновением к коже кисточкой, кусочками ваты, мягкой бумажкой и др.

Терморецепция. Характеристика периферического, проводникового и коркового отделов. Периферические и центральные терморецепторы. Центры терморегуляции в гипоталамусе и коре. Методы исследования температурной чувствительности.

Температурная рецепция осуществляется Холодовыми рецепторами (колбы Краузе) и тепловыми (тельца Руффини, Гольджи-Маццони). При температуре кожи 31-37°С эти рецепторы почти неактивны. Ниже этой границы холодовые рецепторы активизируются пропорционально падению температуры, затем их активность падает и совсем прекращается при +12°С. При температуре выше 37 С активизируются тепловые рецепторы, достигая максимальной активности при +43°С, затем резко прекращают ответы.(от греч. therme — тепло и рецепция), восприятие изменений темп-ры нервной тканью, сопровождающееся возникновением нервных импульсов, с последующей передачей сигнала в ЦНС. Доказано наличие терморецепторов у пойкилотермных животных, включая беспозвоночных. У гомойотермных животных и человека терморецепторы распределены как по поверхности тела (кожа, подкожные сосуды), так и во внутр. органах (верх, дыхат. пути, пищеварит. тракт). Терморецепторы (центральные, термосенсоры) обнаружены в разных отделах мозга (гл. обр. в гипоталамусе, ретикулярной формации, спинном мозге). Изменение темп-ры окружающей среды воспринимается как изменение активности терморецепторов разных типов: механохолодовых, Холодовых, тепловых. Температурные ощущения возникают вследствие интеграции в ЦНС импульсов от терморецепторов разных типов.
Периферические терморецепторы, образованные свободными окончаниями тонких сенсорных волокон типа А (дельта) и С, локализованы в коже и внутренних органах. Существуют и центральные, локализованные в гипоталамусе, терморецепторы.

Кожные терморецепторы реализуют передачу в центры терморегуляции сигналов об изменениях температуры среды, а также обеспечивают формирование температурных ощущений. Число холодовых рецепторов кожи во много раз превышает число тепловых рецепторов. Во внутренних органах и тканях также преобладают холодовые рецепторы.

В спинном и среднем мозге, а также в гипоталамусе (более всего в его медиальной преоптической области) найдены центральные терморецепторы, называемые также термосенсорами. Это нейроны, которые могут возбуждаться при их непосредственном охлаждении, нагревании на 0, 1оС или более и в результате изменять интенсивность как теплопродукции, так и теплоотдачи организма в целом. Например, при нагревании преоптической области гипоталамуса немедленно увеличивается потоотделение, расширяются сосуды кожи, при этом теплопродукция уменьшается. Учащение разрядов тепловых нейронов предшествует повышению частоты дыхания, при котором также растет теплоотдача. С задним гипоталамусом в свою очередь связаны термочувствительные структуры среднего и спинного мозга. Таким образом, центральные аппараты функциональной системы терморегуляции имеют большое число входных каналов.

Центр терморегуляции. Ведущую роль в терморегуляции играют структуры гипоталамуса, что было доказано методом перерезок мозга. Так, у кошки перерезка ростральнее гипоталамуса не приводит к существенным изменениям терморегуляции, но после нарушения связей гипоталамуса со средним мозгом животные практически теряют способность изменять теплопродукцию и теплоотдачу при температурном раздражении.

Термочувствительные нервные клетки преоптической области гипоталамуса непосредственно «измеряют» температуру артериальной крови, протекающей через мозг, и обладают высокой чувствительностью к температурным изменениям (способны различать разницу температуры крови в 0,011 °С). Отношение холодо и теплочувствительных нейронов в гипоталамусе составляет 1:6, поэтому центральные терморецепторы преимущественно активируются при повышении температуры «ядра» тела человека. На основе анализа и интеграции информации о значении температуры крови и периферических тканей, в преоптической области гипоталамуса непрерывно определяется среднее (интегральное) значение температуры тела. Эти данные передаются через вставочные нейроны в группу нейронов переднего отдела гипоталамуса, задающих в организме определенный уровень температуры тела — «установочную точку» терморегуляции. На основе анализа и сравнений значений средней температуры тела и заданной величины температуры, подлежащей регулированию, механизмы «установочной точки» через эффекторные нейроны заднего гипоталамуса воздействуют на процессы теплоотдачи или теплопродукции, чтобы привести в соответствие фактическую и заданную температуру. Таким образом, за счет функции центра терморегуляции устанавливается равновесие между теплопродукцией и теплоотдачей, позволяющее поддерживать температуру тела в оптимальных для жизнедеятельности организма пределах.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: