Классификация усилителей

1) По абсолютному значению усиливаемых частот.


2) По характеру входного сигнала:

1. Усилители непрерывных сигналов;

2. Усилители импульсных сигналов;

2) По назначению:

1. Усилители напряжения;

2. Усилители тока;

3. Усилители мощности;

3). По виду используемых активных элементов:

1. Усилители на электронно-вакуумных лампах (ЭВЛ);

2. Усилители на биполярных транзисторах (БТ);

3. Усилители на полевых транзисторах (ПТ);

4. Усилители на туннельных диодах (ТД);

5. Параметрические усилители. В них активным усилительным элементом является реактивный элемент цепи: L, C;

6. Усилители на интегральных схемах;

4). По числу усилительных каскадов:

Под усилительным каскадом понимают минимальный набор пассивных и активных элементов, обеспечивающих усиление электрического сигнала.

7. Однокаскадные;

8. Многокаскадные;

5). По виду связи между каскадами:


1). Усилители с RC-связью или с реостатно-емкостными связями (рис.8.). Каскады 1 и 2 должны иметь общую точку нулевого потенциала. Такая связь возможна только в усилителях переменного тока.

2). Трансформаторная связь (рис.8.). При трансформаторной связи передача сигнала от одного каскада к другому осуществляется с помощью трансформатора. Каскады могут не иметь общей точки нулевого потенциала. Такая связь возможна только в усилителях переменного тока.

3). Непосредственная или гармоническая связь между каскадами (рис.). Связь между каскадами осуществляется непосредственно или через резисторы. При такой связи каскады обязательно должны иметь общую точку нулевого потенциала и такая связь применима только в УПТ.

4). Оптронная связь (рис.). При такой связи каскады могут не иметь общей точки нулевого потенциала. Такая связь применима в усилителях переме6нного тока и УПТ.

Многокаскадные усилители

Одиночный усилительный каскад имеет невысокий коэффициент усиления (10-500). Для получения больших коэффициентов усиления применяют многокаскадные усилители, в которых каскады соединяют последовательно.

Будем считать, что: 1) частотная характеристика коэффициента усиления i-ого каскада и равны Кi(jω)= Кi(ω)e; 2) каскады согласованы по напряжению т.е. выходное сопротивление предыдущего и входное сопротивление последующего связаны соотношением . Последнее означает, что каскады можно рассматривать как независимые.

Отсюда следует, что

Отсюда следует, что АЧХ коэффициента усиления есть , а его ФЧХ - . Эти соотношение говорят о том, что с увеличением числа каскадов Коэффициент усиления возрастает, а полоса пропускания многокаскадного усиления уменьшается. Так, если все каскады одинаковы и имеют граничную частоту , то общая граничная частота многокаскадного усилителя равна , где n - число каскадов.

Режимы работы активных элементов усилительного каскада

Режим работы активного элемента усилительного каскада характеризуется: а) его рабочей точкой; б) уровнем (величиной) входного сигнала; в) наличием резистора в коллекторной цепи.

Рабочая точка это совокупность постоянных напряжений и токов на выводах активного элемента при отсутствии сигнала на входе. Для биполярного транзистора рабочая точка определяется четырьмя величинами . Эти величины взаимосвязаны и потому достаточно задавать лишь две из них.

В зависимости от уровня входного сигнала различают два режима работы. 1. Режим малого входного сигнала, когда выполняется условие . В таком режиме рабочую точку выбирают из условия, когда . Чаще всего за рабочую точку принимают режим рекомендованный в справочниках для измерений параметров биполярного транзистора. Для маломощных транзисторов это составляет ;

2. Режим большого входного сигнала, когда . Рабочую точку выбирают по ВАХ транзистора исходя из получения , . Положение рабочей точки определяют по графикам входных и выходных ВАХ.

В зависимости от положения рабочей точки различают следующие классы работы активных элементов. Режим класса: A, В, AB, С, D.

1. Режим класса А. Рабочая точка выбирается на середине линейного участка ВАХ (точка А) и при воздействии входного сигнала ее положение остается в пределах этого линейного участка (участок АВ–F). Здесь КНИ→min, а КПД→max.

2. Режим класса В. Рабочая точка выбирается при напряжении, когда выходной ток практически обращается в ноль. Здесь .

3. Режим класса АВ. Рабочая точка выбирается на начале линейного участка.

4. Режим класса С. Рабочая точка выбирается при UБЭ РТ < UБЭ ПОР.

5. Режим класса Д. Биполярный транзистор работает не в усилительном, а в ключевом режиме и под действием входного сигнала находится в одном из двух состояний: насыщения или отсечки.

Принцип работы усилительного каскада на биполярном транзисторе в активном режиме

Биполярный транзистор в зависимости от наличия сопротивления в цепи коллектора может работать в двух режимах: статическом (ненагруженном) или динамическом (нагруженном).

Ненагруженным режимом работы считается режим, когда в коллекторной цепи отсутствует коллекторное сопротивление (рис.). Здесь Uбm - амплитуда гармонического входного сигнала, а Uбэ рт напряжение источника задающего рабочую точку транзистора, Ек – источник питания коллекторной цепи.

Схема работает так. Под действием источников напряжения в цепи базы возникает ток базы, состоящий из двух составляющих Iб=Iбрт+Iбm. Под действием этих токов базы в цепи коллектора возникает ток коллектора состоящий из двух составляющих Iк= BIб= Iкрт+Iкm.

Коэффициент усиления сигнала по току составляет Кi=Iкm/Iбm =B т.к. В>>1, то происходит усиление по току.

В ненагруженном режиме Uкэк и потому режим называют статическим. В этой схеме нет усиления по напряжению.

Для усиления сигнала по напряжению применяют нагруженный режим работы транзистора. В коллекторную цепь транзистора включают резистор Rк (рис.). Он служит для преобразования усиленного переменного тока в усиленное выходное напряжение. В таком режиме выходное напряжение связано с Iк соотношением Uкэк - IкRк, его называют нагрузочной прямой. Под действием входного сигнала напряжение Uкэ изменяется во времени, а потому этот режим называется динамическим. Полезным эффектом в процессе усиления является усиление переменной составляющей входного сигнала.

Uкэ = Eк – JкRк = Eк – JкртRк – JкmRк = Uкэрт – Uкэm

Отсюда следует, что


где h11 - входное сопротивление БТ, это сопротивление ЭП смещенного в прямом направлении.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: