Влияние схемы эксцентричного крепления ребра на результаты подбора арматуры в плите и ребре

При моделировании поля железобетонной плиты пластинчатыми или оболочечными элементами и моделировании балок стержневыми элементами срединная плоскость пластин может быть расположена как на одном уровне, так и на разных уровнях с упругой частью стержня (рис. 3).

Рис. 3. К выбору размещения стержня относительно плиты: 1 – плитный элемент; 2 – стержневой элемент

Можно было бы также представить ребра вертикально расположенными элементами плиты, однако в таком случае возникает вопрос о толковании размещения подобранной арматуры (рис. 4), поэтому в рамках этой статьи мы не будем рассматривать данный вариант.

Рис. 4. Расположение арматуры: а) в реальной конструкции; б) при моделировании стержневым и плитным элементами; в) при моделировании плитными элементами; 1 – плита; 2 – стержень

При смещении стержневого элемента относительно нейтральной оси плиты возникает необходимость учесть эксцентриситет стыков элементов в узлах. Условия совместимости деформаций стержней и пластин будут выполнены при условии присоединения стержней к узлам пластин с помощью абсолютно жестких (EI = ∞) вертикальных вставок (рис. 5).

Рис. 5. Эксцентричность стыков элементов в узлах; 1 – жесткая вставка, С – длина жесткой вставки

При этом в плите возникает мембранная группа усилий, которые в общем случае являются следствием корректного моделирования перекрытия. Следовательно, при эксцентричности стыков элементов в узлах плиты необходимо моделировать оболочечными элементами, которые имеют необходимое количество степеней свободы в узлах.

Если стержни примыкают к узлам пластин непосредственно (без жестких вставок), то в пластинах при вертикальной нагрузке мембранная группа усилий не возникает. Такое моделирование соответствует случаю, когда в реальной конструкции балки как бы выступают над плитами (рис. 6а, 6б). В этом случае при моделировании плиты конечными элементами плиты и оболочки результаты будут одинаковыми.

Рис. 6. Моделирование ребристого перекрытия или плиты (комбинированная модель): а – без жестких вставок (высота балки h), б – без жестких вставок (высота балки h1); в, г – то же, но с жесткими вставками

Каждый из предложенных на рис. 6 вариантов расчетных схем имеет свои преимущества и недостатки. В случаях, представленных на рис. 6а и 6б, жестких вставок нет. В случае, когда в стержневом элементе имеется вставка (рис. 6в, 6г), от действия вертикальной нагрузки в плите возникает мембранная группа усилий. Как следствие, в упомянутых стержнях появляется продольная сила (усилие распора), которая отвечает действительной работе конструкции. Этого не происходит при центрировании элементов по средней линии.

Кроме того, в схемах (рис. 6а, 6б и 6в) в местах пересечения стержня и плиты будет дважды учитываться площадь бетона. В схеме (рис. 6г) такого эффекта не наблюдается, но при этом возникает вопрос, правомерно ли будет перенести площадь подобранной арматуры в сжатой зоне стержня в сжатую зону плиты (изменение плеча внутренней пары сил).

Армирование стержневых элементов также возможно как по первой, так и по второй группам предельных состояний.

Рассмотрим два примера расчета (ребристой панели перекрытия и монолитного ребристого перекрытия с балочными плитами), которые приведены в пособии «Проектирование железобетонных конструкций», и по этим исходным данным смоделируем соответствующие расчетные схемы в комплексе SCAD (учитывая особенности, изложенные выше).

Ребра были представлены стержневыми элементами прямоугольного сечения. Тавровое сечение ребер не рассматривалось, поскольку, во-первых, при таком моделировании ребер будет дважды учитываться бетон сжатой зоны (стержня и плиты), что исказит конечный результат, а во-вторых, моделирование крайних ребер окажется некорректным, поскольку одна из полок тавра будет лишней.

Рассмотрено четыре типа схем, которые отличались между собой представлением нагрузки в расчетной схеме и типом конечного элемента плиты (табл. 1). Представление ребер одним типом элемента (пространственный стержень) при моделировании полки плиты конечными элементами оболочки и плиты объясняется тем, что стержневой элемент плоской схемы не может иметь жестких вставок в своей плоскости.

Таблица 1
Тип схемы Представление нагрузки в расчетной схеме Тип элемента, которым моделируется
полка плиты ребро
  Равномерно распределенная по всей поверхности плиты (с учетом собственного веса полки, ребер и временной нагрузки) [кН/м²] Оболочка Прос­транст­венный стер­жень
  Плита
  Равномерно распределенная по всей поверхности плиты (с учетом собственного веса полки, ребер и временной нагрузки) [кН/м²] + собственный вес ребер [кН/м²] Оболочка
  Плита

Пример 1. Рассмотрим железобетонную ребристую плиту перекрытия размерами 3х12 м. Плита состоит из контурных ребер высотой 450 мм, которые расположены по периметру плиты, и поперечных ребер, расстояние между которыми 1,5 м. Общий вид плиты и ребер показан на рис. 7. В расчетной схеме рёбра были приведены к эквивалентным по площади прямоугольникам. Полка плиты представляет собой однорядную многопролетную плиту, обрамленную ребрами.

Рис. 7. Плита покрытия (опалубочные размеры)

При расчете, приведенном в пособии «Проектирование железобетонных конструкций», средние пролеты рассматривались как плиты, которые защемлены по контуру, а крайние – как плиты, защемленные по трем сторонам и свободно опертые на торцовые ребра (расчет выполняется методом предельного равновесия). Расчетные сечения продольных и поперечных ребер плиты были представлены в виде соответствующих тавров.

В SCAD, кроме комбинированной модели (стержень + плита или оболочка), был проведен и расчет стержневой модели, в которой продольные и поперечные ребра были представлены таврами с соответствующими расчетными размерами поперечного сечения. При этом рассматривалась загрузка поперечного ребра по двум схемам.

Таблица 2 Щелкните, что бы просмотреть

Результаты расчетов по разным схемам приведены в таблице 2. Здесь даны максимальные значения изгибающих моментов в пролетах ребер (взято среднее поперечное ребро). В последнем столбце показана подобранная арматура по результатам традиционного расчета. Как видно из результатов расчета для типов схем 1 и 3 с жесткими вставками, значения изгибающих моментов в ребрах значительно меньше, что можно объяснить действием мембранной группы усилий в оболочках. Результаты подбора арматуры отличаются не так сильно. Это объясняется тем, что при подборе арматуры в этих стержнях учитывалась продольная сила, которая является следствием возникновения распора в ребрах. Отличие результатов подбора арматуры между комбинированной и стержневой моделью можно объяснить тем, что для таврового сечения (при прочих равных исходных данных) требуется меньше арматуры, чем для прямоугольного – за счет большей площади сжатого бетона. В таблице для ребер приведены данные подбора арматуры при расчете с учетом трещинообразования.

Для плиты в таблице 2 приведены максимальные по полю плиты изгибающие моменты на единицу длины сечения (в числителе момент МХ, в знаменателе – MY). Момент МХ растягивает или сжимает волокна сечения в направлении, параллельном оси Х, которая в нашем случае направлена вдоль длинной стороны плиты. Результаты подбора арматуры по SCAD в полке плиты приведены при расчете по прочности. При расчете по второй группе предельных состояний значения подобранной арматуры несколько больше.

Пример 2. Рассмотрим железобетонное монолитное ребристое перекрытие с балочными плитами, которое имеет размеры в плане 24х36 м (рис. 8). Главные балки размещены вдоль (по оси Х), а второстепенные – поперек (по оси Y).

Рис. 8. Конструктивная схема монолитного ребристого перекрытия
Таблица 3 Щелкните, что бы просмотреть

Результаты расчета и их сравнение для монолитного ребристого перекрытия приведены в таблице 3. Арматура для плиты подобрана по 1-й группе, для балок – по 1-й и 2-й группам предельных состояний. Поскольку расчетные схемы второстепенной и главной балок представляют собой многопролетные неразрезные конструкции, то для сравнения были выбраны сечения в первом крайнем пролете (значения в числителе) и на первой промежуточной опоре (значения в знаменателе). Знак «минус» указывает, что растянутое волокно находится сверху. Отличие в значениях изгибающих моментов объясняется тем, что при традиционном расчете расчетные пролеты для второстепенных балок принимают равными расстоянию между внутренними гранями главных балок (уменьшение пролета), а расчетные моменты на опоре берут по грани главных балок (уменьшение расчетного момента) (рис. 9). Как следствие, будет отличаться и величина подобранной арматуры. Такую же расчетную схему (с уменьшенными пролетами и моментами по грани балок) можно смоделировать и в конечно-элементной модели.

Рис. 9. Расчетные пролеты и моменты при ручном расчете

Отличие в усилиях, полученное по моделям, более ощутимо, чем различие в армировании плит, выполненном по полученным усилиям. Это объясняется следующими обстоятельствами:

· усилия в срединной плоскости плиты – сжимающие и воспринимаются бетоном практически без постановки дополнительной арматуры;

· в силу дискретности сортамента арматуры и применения стержней, как правило, только одного диаметра нивелируется различие между необходимой в разных случаях расчетной арматурой и той, которую реально использует производитель работ.

Анализ результатов расчета по предложенным моделям и сравнение их с результатами традиционного расчета дают право утверждать следующее:

1. моделирование ребристого перекрытия или плиты стержневыми и плитными (оболочковыми) элементами по схемам, которые показаны на рис. 3, является корректным отображением реальной конструкции;

2. результаты подбора арматуры в ребрах (балках) почти по всем предложенным моделям являются удовлетворительными;

3. результаты подбора арматуры в полке плиты по сравниваемым методикам сходятся лучше, когда плита является балочной (работает в одном направлении);

4. по результатам расчета и результатам подбора арматуры реальной конструкции наиболее точна схема моделирования ребристого перекрытия, в которой верхние грани ребра и плиты находятся на одном уровне (рис. 3г).

 

Литература

1. А.В. Перельмутер, В.И. Сливкер. Расчетные модели сооружений и возможность их анализа. – Киев, Сталь, 2002. – 600 с.

2. В.С. Карпиловский, Э.З. Криксунов, А.В. Перельмутер, М.А. Перельмутер, А.Н. Трофимчук. SCAD для пользователя. – Киев, ВВП «Компас», 2000. – 332с.

3. СНиП 2.03.01-84*. Бетонные и железобетонные конструкции / Госстрой СССР. – М., ЦИТП Госстроя СССР, 1989. – 88 с.

4. Пособие по расчету статически неопределимых железобетонных конструкций. – М., Стройиздат, 1975. – 192 с.

5. А.Б. Голышев, В.Я. Бачинский, В.П. Полищук и др. Проектирование железобетонных конструкций. – Киев, Будивельник, 1985. – 496 с.

6. Н.И. Карпенко. Теория деформирования железобетона с трещинами. – М., Стройиздат, 1976. – 204 с.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: