double arrow

Физические основы работы магниторезисторов

МАГНИТОРЕЗИСТОРЫ

Цель работы: Ознакомиться с физическими принципами действия, технологией изготовления, конструкцией и применением магниторезисторов, исследовать их основные характеристики и параметры

Магниторезисторы (МР) это электронные компоненты, действие которых основано на изменении электрического сопротивления полупроводника (металла) при воздействии на него магнитного поля. МР используются в качестве магнитных датчиков электрического напряжения и тока, скорости и направления вращения, в устройствах считывания информации в ЭВМ, в вентильных электродвигателях, измерителях магнитного поля и т.д. МР обеспечивают практически идеальную механическую, электрическую, тепловую и т.п. развязку измерительных и управляющих цепей от объектов контроля. Они обладают быстродействием, чувствительностью, надежностью, малыми габаритами и энергопотреблением. В настоящее время известны монолитные и пленочные магниторезисторы.

Принцип действия монолитных МР основан на так называемом магниторезистивном эффекте. Как известно, в пластинке полупроводника, по которой протекает ток, в магнитном поле возникает ЭДС Холла (рис. 8.1.1)

Ех= K I B /b,

где I – ток, протекающий вдоль пластинки, B – индукция магнитного поля, b -ширина пластины в направлении, перпендикулярном току, К=1/ne – коэффициент Холла, e и n соответственно – элементарный заряд носителей тока и их концентрация.

При установлении динамического равновесия между силой Лоренца и силой холловского электрического поля носители заряда, имеющие одинаковую скорость v будут двигаться по прямолинейным траекториям в направлении внешнего электрического тока , при этом вектор суммарного электрического поля направлен к вектору тока через полупроводник под некоторым углом φ. Угол Холла определяется формулой: tg φ = ЕХ / Е = u B, где u- подвижность носителей заряда. При небольших магнитных полях и, следовательно, малых углах Холла φ ≈ u B.

При установлении динамического равновесия возникшая холловская напряженность электрического поля компенсирует действие силы Лоренца, и, следовательно, не происходит искривления траектории носителей заряда, имеющих одинаковую скорость v. Казалось бы, в таком случае сопротивление полупроводника не должно изменяться под действием магнитного поля.

В действительности носители в полупроводнике подчиняются определенному распределению скоростей. Поэтому носители со скоростью, превышающей среднюю скорость, и носители, имеющие скорость, меньшую по сравнению со средней, смещаются к разным точкам на боковой грани пластины полупроводника, поскольку на них действует различная по величине сила Лоренца. Таким образом, удельное сопротивление полупроводника в магнитном поле изменяется из-за искривления траектории носителей заряда, движущихся со скоростью, отличной от средней скорости.

Наибольший магниторезистивный эффект можно получить в полупроводнике такой формы и конструкции, при которой возникновение холловской напряженности электрического поля затруднено или вообще невозможно. Эти условия теоретически могут быть реализованы в пластинке полупроводника с бесконечно большими размерами в направлении, перпендикулярном напряженности внешнего электрического поля. В таком полупроводнике не происходит накопления носителей заряда на боковых гранях, не образуется ЭДС Холла, а траектория заряда отклоняется от направления внешнего электрического поля в направлении силы Лоренца (рис. 8.1.2). Вектор плотности тока совпадает по направлению со скоростью носителей заряда и поэтому оказывается сдвинутым относительно вектора напряженности внешнего электрического поля на угол Холла φ. Отклонение траектории носителей заряда в неограниченном полупроводнике равносильно уменьшению длины свободного пробега носителей заряда в направлении электрического поля на ,

здесь L0 – длина свободного пробега носителей заряда при отсутствии магнитного поля, L ΄- проекция пройденного носителем заряда пути между двумя последовательными столкновениями при наличии магнитного поля, на направление внешнего электрического поля. При малых углах Холла cos φ можно разложить в ряд

cos φ = 1- φ 2/2!+…,

тогда ΔL ≈ L0 – L0 + L0 φ 2/2, и, следовательно, ΔL ≈ L0 φ 2/2.

Так как за время свободного пробега носитель заряда проходит в магнитном поле меньший путь вдоль электрического поля , то это эквивалентно уменьшению дрейфовой скорости и подвижности и, следовательно, удельной проводимости полупроводника., Относительное изменение удельного сопротивления при этом (ρ – ρ0)/ρ0 = ΔL/L0 = u2 B2/2.

Для ограниченного по своим размерам кристалла полупроводника справедливо соотношение Δρ/ρ0 =С u2 B2, где С – коэффициент, зависящий от формы пластинки полупроводника.

В последнее время получили распространение пленочные МР, магниточувствительным элементом которых служит ферромагнитная пленка (сплав никеля с кобальтом или никеля и железа). В основе работы пленочных МР лежит анизотропный магниторезистивный эффект, заключающийся в том, что внешнее магнитное поле изменяет в ферромагнитном материале вероятность рассеяния электронов в различных направлениях, что, в свою очередь, приводит к изменению электрического сопротивления.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: