Солнечная энергия:общие понятия

ЛЕКЦИЯ 6 ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ СОЛНЦА

Солнце - гигантское светило, имеющее диаметр 1392 тыс. км. Его масса (2∙1030 кг) в 333 тыс. раз превышает массу Земли, а объем в 1,3 млн раз больше объема Земли. Химический состав Солнца: 81,76% водорода, 18,14% гелия и 0.1% азота. Средняя плотность вещества Солнца равна 1400 кг/м3. Внутри Солнца происходят термоядерные реакции превращения водорода в гелий и ежесекундно 4 млрд. кг материи преобразуется в энергию, излучаемую Солнцем в космическое пространство в виде электромагнитных волн различной длины.

Солнечная радиация - это неисчерпаемый возобновляемый источник экологически чистой энергии.

Верхней границы атмосферы Земли за год достигает поток солнечной энергии в количестве 5,6∙1024 Дж. Атмосфера Земли отражает 35% этой энергии обратно в космос, а остальная энергия расходуется на нагрев земной поверхности, испарительно-осадочный цикл и образование волн в морях и океанах, воздушных и океанских течений и ветра.

Среднегодовое количество солнечной энергии, поступающей за 1 день на1м2 поверхности Земли, колеблется от 7,2 МДж/м2 на севере и до21,4 МДж/м2 в пустынях и тропиках.

Солнечная энергия может быть преобразована в тепловую, механическую и электрическую энергию, использована в химических и биологических процессах. Солнечные установки находят применение в системах отопления и охлаждения жилых и общественных зданий, в технологических процессах, протекающих при низких, средних и высоких температурах. Они используются для получения горячей воды, опреснения морской или минерализированной воды, для сушки материалов и сельскохозяйственных продуктов и т.п. Благодаря солнечной энергии осуществляется процесс фотосинтеза и рост растений, происходят различные фотохимические процессы. Известны методы термодинамического преобразования солнечной энергии в электрическую, основанные на использовании циклов тепловых двигателей, термоэлектрического и термоэмиссионного процессов, а также прямые методы фотоэлектрического, фотогальванического и фотоэмиссионного преобразований. Наибольшее практическое применение получили фотоэлектрические преобразователе и системы термодинамического преобразования с применением тепловых двигателей.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: