Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

От Артура Корна до Бориса Розинга




К тому времени, когда появился фототелеграф, русский ученый К. Д. Перский подвел итоги проделанной работы по созданию механизма передачи движущего изображения на расстояние и ввел в употребление термин «телевидение»[708].

И хотя изобретение фототелеграфа стало важным шагом на пути создания телевидения, до его реализации было еще далеко. Если возмож-ность преобразования световых колебаний в электрические была доказана, то возможность преобразования электрических колебаний в световые, передача с их помощью изображения и выведения его на экран оставалась гипотезой.

Как уже отмечалось, Д. Кери предложил использовать для этой цели электрические лампы. В одном из его проектов речь шла о 2500 лампах. Именно такое количество разных по яркости точек он предполагал вывести на экран[709]. Между тем первоначально добиться этого не удавалось. Дело в том, что в проектах Д. Кери и А. де Пайвы речь шла о лампах накаливания[710], которые имеют один очень важный недостаток – «инерционность источника света, не поспевающего изменять свою яркость за изменениями сигнала»[711].

Одним из первых, кто понял это, был русский ученый П. И. Бахметьев. Поэтому в 1880 г. он предложил использовать для преобразования электри-ческих сигналов в световые газовые горелки[712].

Но и это предложение не решало проблемы. В связи с этим было обращено внимание на эффект электрической дуги. Электрическая дуга – это «продолжительный электрический разряд между электродами, при котором развивается высокая температура и излучается яркий свет»[713].

Подобное явление открыл русский физик Василий Владимирович Петров (1761–1834)[714]. Результаты своих наблюдений он изложил в книге «Известие о гальвани-вольтовских опытах, которые производил профессор физики Василий Петров, посредством огромной батареи, состоявшей иногда из 4200 медных и цинковых кружков и находящейся при Санкт-Петербургской медико-хирургической академии» [715].

Используя графитные электроды, французский изобретатель Жан Бернар Леон Фуко (Jean Bernard Leon Foucault) (1819–1868) создал в 1844 г. дуговую лампу[716]. От лампы накаливания она отличается тем, что в ней электрический разряд возникает и исчезает почти мгновенно. Кроме того, меняя напряжение в сети можно изменять яркость свечения электрического разряда.

Однако первые дуговые лампы были очень несовершенны. Все упиралось в три проблемы: а) как избежать того, чтобы под действием высокой температуры не оплавлялись концы электродов, б) как изолировать обнаженные концы электродов, по которым идет ток, в) как сделать осветительный прибор безопасным с пожарной точки зрения. Решение этих трех задач привело к созданию дуговой газоразрядной лампы, которую некоторые называют «лампой Гейслера».




Можно встретить мнение, что первым, кто решил использовать дуговую лампу для передачи изображения на расстояние, был П. Нипков, в проекте которого якобы фигурировала неоновая лампа. Однако неоновая лампа появилась после того, как в 1909 г. американский ученый Ирвинг Ленгмюр предложил для продления срока действия электрических ламп наполнять их инертным газом[717], а в 1910 г. французский инженер Жорж Клод (1870–1960) использовал для этого неон[718]. Что же касается П. Нипкова, то в его патенте фигурирует просто «источник света»[719]

Поэтому пальма первенства в этом вопросе, по всей видимости, принадлежит американскому изобретателю Уильяму Сойеру (1880)[720].

К тому времени газоразрядная лампа Г. Гейслера привлекла к себе особое внимание. Исследователями было замечено: «когда газ становится достаточно разряженным, стеклянные стенки, расположенные на конце, противоположном катоду (отрицательному электроду), начинают флуорес-цировать зеленоватым светом, что, по всей видимости, происходило под воздействием излучения, возникающего на катоде»[721].

Иначе говоря, действие лампы Г. Гейслера сопровождалось эффектом люминесценции. Люминесценция – это свечение тела (или вещества), происходящее под влиянием внешнего излучения, электрического разряда, химического процесса или других факторов[722].

Занимаясь изучением газовых разрядов и используя лампы, изготовленные для него Г. Гейслером[723], боннский математик Ю. Плюккер (1801–1868)[724] в 1858 г. установил, что при электрическом разряде вблизи катода действительно возникает излучение, названное им катодным[725].



Катод – электрод источника электрического тока с отрицательным полюсом, а «катодоиллюминесценция – вид люминесценции, в которой свечение люминофоров происходит под действием падающего на них потока электронов» [726].

Продолжая эти исследования, английский физик Уильям Крукс (1832–1919) обнаружил в 1879 г., что под влиянием катодных лучей некоторые кристаллы, например, алмаз, рубин, тоже начинают люминисцировать, причем разным цветом[727].

Для поиска способов преобразования электрических колебаний в световые сигналы большое значение имело еще одно открытие.

В 1869 г. немецкий физик И. В. Гитторф (1824–1914) установил, что катодные лучи могут отклоняться под влиянием магнитного поля[728].

На основании этих открытий уже известный нам страсбургский профессор Карл Фердинанд Браун (1850–1918) создал в 1897 г. катодную трубку, получившую позднее название электронной. Он вывел на флуоресцирующий экран катодный луч и, изменяя его направленность, сумел прочертить на нем прямую линию[729].

«В 1897 г. Браун, – говорится в одной из его биографий, – изобрел осциллоскоп – прибор, в котором переменное напряжение перемещало пучок электронов внутри вакуумной трубки с катодными лучами. След, оставляемый этим пучком на поверхности трубки, можно было графически преобразовать с помощью вращающегося зеркала, давая тем самым зрительный образ меняющегося напряжения. Трубка Брауна легла в основу телевизионной техники, так как работа кинескопа основана на том же принципе»[730].

В том же 1897 г. английский физик Джозеф Томсон (1856–1940) открыл электрон и доказал, что испускаемые катодом лучи – это электроны[731].

В 1903 г. немецкий физик Артур Венельт (Wehnelt) ввел в трубку отрицательно заряженный цилиндрический электрод, с помощью которого (изменяя силу заряда) оказалось возможным регулировать поток электронов, меняя интенсивность электронного луча, а значит, яркость свечения люминофора и точки на экране[732].

Таким образом, если до 1903 г. катодный луч мог чертить на экране однотонные линии, с этого момента открылась возможность разложения светового пятна на экране на оттенки и таким образом воспроизведения на нем изображения.

«Катодный пучок, – писал русский физик Б. Л. Розинг, – есть именно то, идеальное безынертное перо, которому самой природой уготовано место в аппарате получения в электрическом телескопе. Оно обладает тем ценнейшим свойством, что его можно непосредственно двигать с какой угодно скоростью при помощи… электрического или магнитного поля, могущего при том быть возбужденным со скоростью света с другой стороны, находящейся на каком угодно расстоянии»[733].

«Приемная телевизионная трубка, кинескоп – электронно-лучевая трубка, применяемая в телевизоре для воспроизведения изображения. Поток электронов (электронный луч) падает на переднюю стенку трубки – экран, покрытый люминофором, который светится под ударами электронов. Электронный луч отклоняется магнитным полем отклоняющей катушки, надетой на горловину трубки, и воспроизводит на экране передаваемое телевизионное изображение»[734].

Первым 10 октября 1906 г. идею использования электроннолучевой трубки для передачи изображения на расстояние запатентовали немецкие ученые М. Дикман и Г. Глаге[735]. 25 июля 1907 г. подобную же заявку подал и 13 декабря того же года получил патент Б. Л. Розинг[736].

В том же году русский физик Л. И. Мандельштам создал «генератор пилообразного напряжения», представляющий собой механизм линейного перемещения электронного луча.[737]

9/22 мая 1911 г. Б. Л. Розинг впервые продемонстрировал свое изобретение в действии[738]. Можно встретить мнение, будто бы он передал на расстояние движущееся изображение[739]. На самом деле ему удалось добиться лишь того, что электронный луч прочертил на экране «четыре параллельные светящиеся линии»[740].

Но для того времени и это было огромным событием. Б. Л. Розингу удалось то, что безуспешно пытались осуществить до него на протяжении более сорока лет: не только передать изображение с помощью электричества на расстояние, но и вывести его на экран.

«После изобретения Б. Л. Розингом электроннолучевой трубки, – пишет В. А. Урвалов, – в развитии телевидения наметились два направления: оптико-механическое и электронное»[741].

6.3. Создание электромеханического телевидения





Дата добавления: 2013-12-28; просмотров: 455; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 9009 - | 7661 - или читать все...

Читайте также:

 

3.83.32.171 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.005 сек.