Б е т а - и з л у ч е н и е

Рис.1.6. Схема эффекта образования электронно-дырочной пары

Рис.1.5. Схема Комптон-эффекта

Рис. 1.4. Схема фотоэффекта

Г а м м а - и з л у ч е н и е

Взаимодействие гамма-квантов с вещество может сопровождаться фотоэффектом, комптоновским рассеянием и образованием электрон-позитронных пар.

1)фотоэлектрический эффект, - процесс при котором фотон передает свою энергию связанному электрону, причем часть энергии расходуется на разрыв связей с атомом, а остальная превращается в кинетическую энергию электрона;

2)рассеяние атомными электронами (комптоновское рассеяние), - процесс в результате которого фотон отклоняется от своего первоначального направления с потерей и без потери энергии;

3)образование электронно-позитронных пар, - это процесс при котором фотон в поле ядра атома или электрона исчезает и рождается пара электрон-позитрон, полная кинетическая энергия которой равна фотону, уменьшенной на энергию покоя двух появившихся частиц.

Указанные три процесса могут происходить как независимо друг от друга, так совместно.

Вид процесса зависит от энергии гамма-кванта:

Е = hν, (1.33.)

где: h - постоянная Планка; ν - частота излучения.

Фотоэффект возникает при Е = 10 эВ - 1 МэВ, то есть при относи­тельно малых значениях энергий. В этом случае вся энергия гамма-кван­та передается орбитальному электрону, и он выбивается из орбиты (рис.1.4.).

Справка: Название "фотоэффект" дано потому, что этот эффект обнаружен при исследовании влияния солнечного света ("фотос" на греческом "свет").

С ростом энергии гамма-квантов явление фотоэффекта становится все меньше, а при энергии 100 - 200 КэВ начинает преобладать комптон-эффект, то есть гамма-квант сообщает достаточную кинетическую энергию электрону, последний покидает атом (упругое взаимодействие), а сам гамма-квант изменяет направление своего движения и его частота несколько уменьшается (рис.1.5.). Если энергия гамма-кванта превышает 1,02 МэВ, то он поглощается ядром, а из последнего одновременно вылетают электрон и позитрон (рис. 1.6.). Таким образом, гамма-кванты способны косвенно ионизировать вещество.

γ
е-

 
 



 
 


Рассмотрим, проникающую способность гамма-квантов.

Известно, что гамма-квант образуется при переходе ядра в более низкие энергетические состояния. Обладая нулевой массой покоя, они не могут замедляться в среде, они поглощаются или рассеиваются.

Наша справка. В январе 2001 года в США экспериментально удалось остановить луч света в среде. Так как и солнечный свет и гамма-лучи имеют одинаковую электромагнитную природу, возникает сомнение относительно выше приведенного утверждения.

При прохождении через вещество их энергия не меняется, но уменьшается интенсивность по следующему закону (рис.1.7.):

I = Iо ехр(-mх) (1.34.)

где: I = Еγn/t; n - число квантов; m - коэффициент поглощения; х - толщина поглотителя (вещества), см; Iо - интенсивность квантов до прохождения поглотителя, МэВ/с.

В практических расчетах вместо величины m часто используют понятие "толщина слоя половинного ослабления", это такая толщина материала, при прохождении которой интенсивность облучения уменьшается в 2 раза. Запишем уравнение (1.34.) в виде:

Iо /I = ехр(-mх) (1.35.)

 
 


Рис.1.7. К оценке ослабления гамма-излучений веществом

Полагая Iо /I = 2 и логарифмируя правую и левую части уравнения (1.35.) получим: ln2 = md, d = 0,693/m

Тогда, формула (1.34.) примет вид:

I = Iо ехр(- 0,693х/d) = I0 е- 0,693Х/d (1.36.)

Толщина слоя половинного ослабления d берется из таблиц, но если они отсутствуют, то эта величина может быть вычислена приближенно по плотности материала ρ:

d = 13/r, (1.37.)

где: 13 см - слой воды, ослабляющий гамма-излучение в 2 раза; r - плотность материала, г/см3. Для некоторых материалов величины d представлены в приложении 3

Выражение (1.36.) можно преобразовать следующим образом:

Косл = I0/I = ехр (0,693х/d), (1.38.)

где Косл - коэффициент ослабления гамма-излучения проходящего через преграду толщиной х и значением слоя половинного ослабления для данного материала d (рис. 1.9.). При грубой оценке выражение (1.38.) можно упростить полагая, что основание натурального логарифма е = 2,73…≈ 2, а 0,693 ≈ 1, получим

Косл ≈ 2х/d (1.39.)

Расчеты показывают, что проникающая способность гамма-излучения в воздухе десятки и сотни метров, в твердых телах - многие сантимет­ры, в биологической ткани человека часть гамма-квантов проходят через человека насквозь.

Прохождение бета-частиц (электронов) через вещество сопровождается упругими и неупругими соударениями с ядрами и электронами тормозящей среды.

Упругое рассеяние электронов на ядрах более вероятно и осуществляется при относительно низких энергиях электронов Еβ < 0,5 МэВ ( рис.1.8.). Упругое рассеяние электронов на электронах в Z раз (Z - величина заряда ядра) менее вероятно, чем на ядрах (рис.1.9.). Возможен в редких случаях и сдвиг ядер атомов кристаллической решетки (рис.1.10.).

 
При энергии электронов выше энергии связи электрона и до ≈ 1 МэВ основным механизмом потерь энергии является неупругое рассеяние на связанных электронах, приводящее к ионизации и возбуждению атомов (рис.1.11.).

                           
   
 
 
Рис.1.8. Упругое рассеяние бета-частиц на ядрах атомов
 
Рис.1.9. Упругое рассеяние бета-частиц на электронах атома
 
 
   
   
       
 
 
   
Рис.1.10. Вариант смещения ядра атома кристаллической решетки


При больших энергиях электронов главным механизмом потерь энергии является радиационное торможение, при котором возникает тормозное излучение.

             
   
   
 
   
 
 
 
Рис. 1.11. Ионизация атома бета-частицами (неупругое взаимодействие)


Одним из вариантов неупругого взаимодействия является К- захват.

Таким образом, процессы взаимодействия электронов (бета-частиц) со средой характеризуются радиационным торможением и относительно большой потерей энергии или значительным изменением направления движения электронов в элементарном акте. Вследствие этого взаимодействия интенсивность пучка электронов уменьшается почти по экспоненте с ростом толщины поглощающего слоя х, т.е. для бета-частиц справедлива формула (1.35.).

Путь электронов в веществе представляет ломаную линию, а пробег электронов одинаковых энергий имеет значительный разброс. Пробег электронов (бета-частиц) примерно в 1000 раз больше пробега альфа-частиц в веществе. В таблице 1.2. показана средняя глубина пробега бета-частиц в воздухе, биологической ткани и для примера в алюминии.

Итак, бета-частицы не имеют точной глубины проникновения, так как обладают непрерывным энергетическим спектром. Для грубой оценки глубины пробега бета-частиц пользуются приближенными формулами. Одна из них:

Rср/Rвозд = rвозд/rср (1.40.)

где: Rср - длина пробега в среде; Rвозд - длина пробега в воздухе, Rвозд = 450Eb; rвозд и rср - плотность воздуха и среды соответственно; Eb - энергия бета-частиц.

Таблица 1.2.

Пробеги бета-частиц

Максимальная энергия бета-частиц, Е, МэВ Воздух, см Биологическая ткань, мм Алюминий, мм
0,01 0,13 0,002 0,0006
0,02 0,52 0,008 0,0026
0,03 1,12 0,018 0,0056
0.04 1,94 0,030 0,0096
0,05 2,91 0,046 0,0144
0,06 4,03 0,063 0.0200
0.07 5,29 0,083 0,0263
0,08 6,93 0,109 0,0344
0,09 8,20 0,129 0,0407
0,1 10,1 0,158 0,050
0,5   1,87 0,593
1,0   4,80 1,52
1,5   7,80 2,47
2,0   11,1 3,51
2,5   14,3 4,52
3,0   17,4 5,50
5,0   29,8 9,42
    60,8 19,2

Примечание. Наиболее распространены радионуклиды, излучающие бета-частицы с энергией от нескольких десятков килоэлектронвольт до 3,0 - 3,5 МэВ.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: