double arrow

Искусственный интеллект


Идеи моделирования человеческого разума известны с древнейших времен. Впервые об этом упоминается в сочинении философа и теолога Раймунда Луллия (около 1235 – 1315) «Великое искусство», который не только высказал идею логической машины для решения разнообразных задач, но и попытался ее реализовать. Рене Декарт (1596 – 1650) и Готфрид Вильгельм Лейбниц (1646 – 1716) независимо друг от друга развивали учение о прирожденной способности ума к познанию и всеобщих и необходимых истин логики и математики, работали над созданием универсального языка классификации всех знаний. Именно на этих идеях базируются теоретические основы создания искусственного интеллекта. Толчком к дальнейшему развитию модели человеческого мышления стало появление в 40-х гг. ХХ в. ЭВМ. В 1948 г. американский ученый Норберт Винер (1894 – 1964) сформулировал основные положения новой науки – кибернетики. В 1956 г. признано новое научное направление, связанное с машинным моделированием человеческих, интеллектуальных функций, и названное искусственным интеллектом.

Вскоре эта отрасль разделилась на два направления: нейрокибернетику и кибернетику «черного ящика».




Нейрокибернетика обратилась к структуре человеческого мозга, как единственно мыслящему объекту и занялась его аппаратным моделированием. Нейрокибернетика занимается созданием элементов, аналогичных нейронам (связанным друг с другом нервным клеткам, составляющим основу мозга), и их объединением в функционирующие системы, названные нейросетями. В середине 80-х гг. ХХ в. в Японии был создан первый нейрокомьютер, моделирующий структуру человеческого мозга. Его основная область применения – распознавание образов.

Для кибернетики «черного ящика» структура модели не важна, важна ее реакция на заданные входные данные. На выходе модель должна реагировать как человеческий мозг. Ученые этого направления занимаются разработкой алгоритмов решения интеллектуальных задач для имеющихся вычислительных систем. Наиболее значимые результаты:

Модель лабиринтного поиска (конец 50-х гг.), в которой рассматривается граф состояний объекта и в нем происходит поиск оптимального пути от входных данных к результирующим. На практике эта модель не нашла широкого применения.

Эвристическое программирование (начало 60-х гг.) разрабатывало стратегии действий на основе заранее известных заданных правил (эвристик). Эвристика – теоретически не обоснованное правило, позволяющее уменьшить количество переборов в поиске оптимального пути.

Методы математической логики. Метод резолюций, позволяющий на основе определенных аксиом автоматически доказывать теоремы. В 1973 г. создан язык логического программирования Пролог, позволяющий обрабатывать символьную информацию.

С середины 70-х гг. реализуется идея моделирования конкретных знаний специалистов- экспертов. В США появляются первые экспертные системы. Возникает новая технология искусственного интеллекта, основанная на представлении и использовании знаний. С середины 80-х гг. искусственный интеллект коммерциализируется. Растут капиталовложения в эту отрасль, появляются промышленные системы, повышается интерес к самообучающимся системам.







Сейчас читают про: