Теорема умножения вероятностей

Зависимые и независимые события. Условная вероятность

Два события А и В называются независимыми, если появление одного из них не влияет на вероятность наступления другого. В противном случае события называются зависимыми. Например, появление герба при первом бросании монеты (событие А) не влияет на вероятность появления герба при втором бросании (событие В).

Пусть имеется урна с 10 белыми и 5 чёрными шарами, отличающимися только цветом. Допустим, что производится последовательно два извлечения шара. Обозначим через А появление белого шара при первом извлечении и через В появление белого шара при втором извлечении. Если вынутый шар при первом извлечении снова возвращён в урну, то события А и В будут независимыми. В этом случае вероятность события В не зависит от того, имеет или не имеет место событие А, и составляет.

Пусть теперь при извлечении шаров из урны первый вынутый шар не возвращается в урну. Тогда вероятность появления события В будет зависеть от того, появилось при первом извлечении событие А, или нет (события зависимые). А именно, если при первом извлечении был вынут белый шар, то Если же при первом извлечении был вынут чёрный шар, то Таким образом вероятность события В определяется от дополнительного условия появления или непоявления события А.

Определение. Вероятность события В, вычисленная в предположении, что имеет место событие А, называется условной вероятностью и обозначается Вероятность события В, вычисленная без учёта появления или непоявления события А, называется безусловной вероятностью.

При определении условных вероятностей методом непосредственного подсчёта име-

ются некоторые особенности. Предположим, что нужно определить. Пусть среди равновозможных исходов событию А благоприятствуют исходов, при некоторых из них пусть появляется и событие В. Допустим, что событие В появляется при исходах из. Так как нас интересует вероятность события В при дополнительном условии, что событие А имеет место, то равновозможными исходами для события В нужно считать не все равновозможных исходов, а те из них, при которых наступает событие А. Следовательно. Таким образом, условная вероятность события В при условии наступления события А равна отношению числа исходов, при которых наступает совместно и А и В, к числу исходов, при которых наступает событие А.

Теорема. Вероятность совместного наступления двух событий (АВ) равна произведению вероятности одного из этих событий на условную вероятность второго, вычисленную в предположении, что первое событие наступило, т.е..

Доказательство. Пусть наступлению события А благоприятствуют исходов из равновозможных, не совместных и единственно возможных. Тогда безусловная вероятность события А будет равна

.

Пусть далее из исходов, при которых наступает событие А, наступлению события В благоприятствуют исходов (). Тогда условная вероятность события В, вычисленная в предположении, что произошло событие А, будет равна

.

Вычислим теперь вероятность наступления событий и А, и В. Совместное наступление событий и А, и В может иметь место только в случаях из равновозможных. Следовательно,

.

Разделив и умножив эту дробь на, получим

.

Заметим, что.

Вероятность совместного наступления нескольких взаимозависимых событий (АВС…LК) равна произведению вероятности первого события на условную вероятность второго в предположении, что первое наступило, на условную вероятность третьего в предположении, что первые два наступили, и т.д., т.е.

Теорема. Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий, т.е..

Доказательство. Из доказанной теоремы следует. Так как события А и В независимы, то. Следовательно,.

Вероятность совместного появления нескольких независимых событий А, В, С,…,К равна произведению вероятностей этих событий, т.е.

.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: