Графическое отображение вариационных рядов

Вариационные ряды

При изучении совокупности интересующий нас признак у различных единиц совокупности принимает различные значения, т.е. он имеет некоторую вариацию.

Вариацией признака называется наличие различий в численных значениях признаков у отдельных единиц совокупности.

Чтобы выявить характер распределения единиц совокупности по варьирующим признакам, определить закономерности в этом распределении, строят ряды распределения единиц совокупностей по какому-либо варьирующему признаку.

Ряды распределения, построенные по количественному признаку называются вариационными.

При анализе вариационных рядов решают следующие задачи:

1) Определение меры вариации, т.е. количественное измерение степени колеблемости признака. Это позволяет сравнивать различные совокупности между собой по степени рассеяния и отслеживать уровень вариации признака одной и той же совокупности в различные периоды.

2) Исследование закономерностей вариации в статистических совокупностях для изучения причин, вызывающих вариацию.

Для описания статистических распределений обычно используются следующие виды характеристик (показателей):

1) средние величины;

2) характеристики вариации (рассеяния);

3) характеристики дифференциации и концентрации;

4) характеристики формы распределения.

Вариационный ряд по своей конструкции имеет 2 характеристики:

· значения варьирующего признака – варианты xi, i = 1,2,…, m;

· число случаев вариантов: абсолютные – частоты ni (fi), относительные – частости wi (относительные доли частот в общей сумме частот).

Тогда можно сказать, что вариационный ряд – это ранжированный (упорядоченный) в порядке возрастания или убывания ряд статистических частот (частостей).

Вариационные ряды по способу построения бывают дискретные и интервальные.

Дискретный вариационный ряд можно рассматривать как такое преобразование ранжированного ряда, при котором перечисляются отдельные значения признака и указывается их частота.

Если число вариантов велико или признак имеет непрерывную вариацию, то строится интервальный вариационный ряд, в котором отдельные варианты объединяются в интервалы (группы). Принципы построения групп рассмотрены в разделе 2.4.Существуют следующие виды графического отображения вариационных рядов (рис. 3.1, 3.2):

· полигон для отображения дискретных рядов, когда фиксируются значения (xi; ni, i = 1,2,…, m);

· гистограмма для отображения интервальных рядов (ki = х (i +1)хi,
ni (wi));

· кумулята (кумулятивный ряд) – кривая накопленных частот.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: