Биологические мембраны

1. Мембраны клетки: общие представление о структуре, свойствах и функции.

2. Липидный состав мембран – фосфолипиды, гликолипиды, холестерин. Участие фосфолипаз в обмене фосфолипидов.

3. Белки мембран – интегральные, поверхностные, «заякоренные». Значение посттрансляционных модификаций в образовании функционально-активных мембранных белков.

4. Механизмы переноса веществ через мембраны: простая диффузия, первично-активный транспорт (примеры, биологическая роль).

5. Механизмы переноса веществ через мембраны: пассивный транспорт, регулируемые каналы, вторично-активный транспорт (примеры, биологическая роль).

6. Особенности переноса через мембраны макромолекул: эндоцитоз и экзоцитоз, биохимическое значение процессов.

7. Трансмембранная передача сигнала. Участие мембран в активации внутриклеточных регуляторных систем – аденилатциклазная система.

8. Трансмембранная передача сигнала. Участие мембран в активации внутриклеточных регуляторных систем – инозитолфосфатная система.

9. Каталитические мембранные рецепторы на примере рецептора инсулина.

Энергетический обмен.

1. Катаболизм основных пищевых веществ – углеводов, жиров и белков; понятие о специфических путях распада и общем пути катаболизма.

2. Структурная организация митохондрий. Ферментные системы митохондрий - генераторы водорода.

3. Окислительное декарбоксилирование пирувата: последовательность реакций, строение пируватдегидрогеназного комплекса.

4. Цикл лимонной кислоты (цикл Кребса): последовательность реакций, характеристика ферментов.

5. Механизмы регуляции цикла Кребса, его функции. Анаплеротические реакции (реакции, пополняющие цитратный цикл).

6. Связь между общим путем катаболизма (окисление пирувата и ацетилКоА) и митохондриальной цепью переноса электронов. Механизмы регуляции общего пути катаболизма.

7. Фазы извлечения энергии из питательных веществ. Пировиноградная кислота и ацетил-КоА: пути образования и пути использования в организме. Значение этих процессов.

8. Эндергонические и экзергонические реакции в живой клетке. Макроэргические соединения. Дегидрирование субстратов и образовазование воды как источник энергии для синтеза АТФ.

9. Структура и функция дыхательной цепи. Организация компонентов дыхательной цепи в митохондриях: НАД-зависимые и флавиновые дегидрогеназы, НАДН-дегидрогеназа, убихинол-дегидрогеназа, цитохром с-оксидаза, их характеристика.

10. Виды фосфорилирования. Понятие о субстратном и окислительном фосфорилировании. АТФ - универсальный источник энергии в клетке и ее использование в процессах жизнедеятельности. Цикл АТФ/АДФ.

11. Механизм сопряжения окисления с фосфорилированием в дыхательной цепи. Трансмембранный электрохимический потенциал как промежуточная форма энергии при окислительном фосфорилировании. Понятие об участках сопряжения. Коэффициент Р/О.

12. H+-АТФ – синтетаза: структура, механизм действия. Дыхательный контроль.

13. Цепь переноса электронов как часть системы дыхания, начинающейся с вдыхания воздуха.

14. Разобщение тканевого дыхания и окислительного фосфорилирования. Терморегуляторная функция тканевого дыхания.

15. Регуляция цепи переноса электронов. Нарушения энергетического обмена: гипоэнергетические состояния как результат гипоксии, гипо- и авитаминозов и др. причин. Особенности энергетического обмена в бурой жировой ткани.

16. Основные пути потребления кислорода в реакциях биологического окисления - оксидазный, пероксидазный, оксигеназный и пероксидное окисление ненасыщенных жирных кислот.

17. Образование токсических форм кислорода, механизм их повреждающего действия на клетки. Регуляторы свободно-радикального окисления в клетках.

Обмен и функции углеводов.

1. Глюкоза как важнейший метаболит углеводного обмена: общая схема источников и путей расходования глюкозы в организме.

2. Особенности обмена глюкозы в различных органах и клетках: эритроциты, мозг, мышцы, жировая ткань, печень.

3. Катаболизм глюкозы. Аэробный гликолиз – основной путь катаболизма глюкозы у человека. Последовательность реакций.

4. Аэробный гликолиз: распространение, энергетическая ценность и физиологическое значение аэробного распада глюкозы. Использование глюкозы для синтеза жиров в печени и жировой ткани.

5. Анаэробный гликолиз: гликолитическая оксидоредукция, пируват как акцептор водорода, субстратное фосфорилирование. Энергетический баланс, распределение в организме и физиологическое значение анаэробного гликолиза.

6. Переключение анаэробного гликолиза на аэробный. Окисление внемитохондриального НАД·H2: механизм, биологическая роль.

7. Сходство и отличие гликолиза и спиртового брожения. Значение этих процессов в образовании высокоэнергетических фосфатов (АТФ). Метаболизм экзогенного этанола.

8. Свойства и распространение гликогена как резервного полисахарида. Мобилизация гликогена: механизм, регуляция, биологическая роль.

9. Свойства и распределение гликогена как резервного полисахарида. Биосинтез гликогена: механизм, регуляция.

10. Биосинтез глюкозы (глюконеогенез): источники, механизм, биологическое значение.

11. Взаимосвязь гликолиза в мышцах и глюконеогенеза в печени: цикл Кори, глюкозо-аланиновый цикл. Аллостерические механизмы регуляции аэробного и анаэробного путей распада глюкозы и глюконеогенеза.

12. Пентозо-фосфатный путь  превращения глюкозы: окислительная стадия, суммарные реакции, распространение и биологическое значение.

13. Наследственные нарушения обмена моносахаридов и дисахаридов (галактоземия, непереносимость фруктозы, непереносимость дисахаридов).

14. Гликогенозы и агликогенозы.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: