Сложение синусоидальных волн

Гари Дэвис, Ральф Джонс

Звук: теория, устройства, практические рекомендации

Мы начинаем публикацию большого курса, в котором последовательно будут рассмотрены наиболее важные теоретические вопросы, возможности и особенности различной аудиотехники, а также современные устройства для работы со звуком. В первой главе рассказывается о аудиосигнале, звуковых волнах и принципах работы звукоусилителной аппаратуры.

Введение

С различными аудиосистемами человек сталкивается ежедневно. Стереосистема или хотя бы простой радиоприемник есть в каждом доме, владельцы автомобилей устанавливают в свои машины аудиоаппаратуру, которая по сложности превосходит домашние устройства, а на предприятиях широко применяются системы связи Интерком. В данном курсе рассматривается особый класс аудиосистем - профессиональные звукоусилительные системы, и термин "звуковая система" в нем используется, когда подразумевается комплект звукоусилительной аппаратуры.

Профессиональная звукоусилительная аппаратура, как правило, сложнее обычных домашних стереосистем, поэтому, чтобы научиться правильно ее использовать, нужно хорошо разбираться в принципах ее работы.

Данный курс даст те знания, которые помогут не только надлежащим образом работать с системами усиления звука, но и позволят научиться собирать такие системы самостоятельно.

Глава 1

Аудиосигнал

Звуковые волны

Звук - это разновидность кинетической энергии, которая называется "акустической" и представляет собой пульсацию давления, возникающее в физической среде при прохождении звуковой волны.

Полный период колебания волны звукового давления состоит из полупериода сжатия (повышения давления) и последующего полупериода разряжения молекул воздуха (понижения давления). Звуки с большей амплитудой (громкие) вызывают более сильное сжатие и разряжение молекул воздуха, чем звуки с меньшей амплитудой (тихие).

 
Рис.1.1. Графическое представление синусоидальной звуковой волны

Скорость пульсации звукового давления называется "частотой волны". К звуковым волнам относятся те, частота пульсации давления которых в воздухе составляет от 20 до 20000 колебаний (полных периодов) в секунду. Частота определяет другую характеристику звука - его высоту. И хотя высота звука является более сложной характеристикой, чем частота (она зависит также от амплитуды звуковых колебаний), в общем случае, звуки большей частоты воспринимаются, как более высокие. Для измерения частоты звуковых колебаний используется единица, которая называется "герц" и обозначается Гц:
20 Гц = 20 колебаний в секунду.

Периодом волны называется время одного полного колебания звуковой волны, он измеряется в секундах и определяется по уравнению:
Период = 1/Частота.

Скорость распространения звуковой волны в воздухе при нормальных условиях (при 15 °С на уровне моря) составляет 344 м/с (1130 фут/с). Скорость звука не зависит от его частоты. Реальное расстояние, которое звуковая волна определенной частоты проходит за один полный период, называется "длиной волны". Длина волны выражается уравнением:
Длина волны = Скорость звука / Частота




Звук как электрический сигнал

Звук (аудиосигнал) может быть передан в виде колебаний электрического напряжения или силы тока. В аудиоаппаратуре сила тока (или напряжение) сигнала пульсирует точно с такой же частотой, что и энергия звуковых колебаний, которую она представляет, а амплитуда электрического аудиосигнала изменяется пропорционально амплитуде звуковой волны.

Амплитуда (или сила аудиосигнала) называется "уровнем сигнала". Уровень акустического или электрического сигнала выражается в децибелах. (Эти единицы измерения подробно будут рассмотрены в гл. 4).

 
Рис. 1.2. Графическое представление аудиосигнала (один полный период синусоидальной волны).

Фаза

Разница во времени между звуковой волной (или аудиосигналом) и определенной точкой отсчета, начальным моментом времени, называется "фазой сигнала". Фаза измеряется в градусах, и один полный период синусоидальной волны равен 360 °.

За начальный момент времени может быть выбрано любое произвольное значение на оси времени. На рис. 1.2 аудиосигнал представлен в виде синусоидальной волны. (Синусоидальная волна - это чистый тон с одной основной частотой). Фаза синусоидальной волны на этом рисунке определяется относительно начального момента времени T0, который совпадает с началом первого периода волны (но в качестве точки отсчета можно было бы принять любую точку внутри периода волны).

Точкой отсчета фазы может служить и другой сигнал. В этом случае опорный сигнал должен повторять форму сигнала, фазу которого измеряют. На рис. 1.3 показан процессор аудиосигналов с одним входом VIN и одним выходом VOUT. Здесь фаза выходного сигнала определяется относительно входного.

 
Рис. 1.3. Соотношение фаз сигналов на входе и выходе процессора

На рис. 1.3б представлен выходной сигнал, фаза которого совпадает с фазой входного сигнала: обе синусоидальные волны пересекают точку начала координат в одно и то же время, и они имеют одинаковое направления. На рис. 1.3в выходной сигнал отстает от входного на 90°: синусоидальная волна пересекает точку начала координат, соответствующей максимуму другой волны, направление обеих волн совпадает. На рис. 1.3г фазы выходного и входного сигналов отличаются на 180° (обе синусоидальные волны пересекают точку начала координат в один и тот же момент времени, но они имеют разное направление). На разных частотах относительная фаза сигнала может быть различной, именно такие сигналы чаще всего присутствуют в реальных аудиосхемах.

Сложение синусоидальных волн

Фаза сигнала имеет очень большое значение, так как от нее зависит то, как будет происходить наложение сигналов. При микшировании сигналов на микшерском пульте или смешивании звуковых волн в воздухе, их фазы складываются алгебраически. На рис. 1.4 показано сложение двух синусоидальных сигналов с одинаковыми уровнем и частотой, но разными фазами.

 
Рис. 1.4. Сложение двух синусоидальных сигналов с одинаковыми уровнем и частотой, но разными фазами

Синусоидальные волны, показанные на рис. 1.4а, синфазны, поэтому при их сложении получается волна с удвоенной амплитудой. Синусоидальные волны, изображенные на рис 1.4б отличаются по фазе на 90°, поэтому амплитуда образующейся в результате их сложения синусоидальной волны в 1,414 больше, чем амплитуда исходных волн. Фаза синусоидальных волн на рисунке 1.4в отличается на 180°, поэтому при их сложении происходит полное подавление сигнала.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: