Виртуализация сегодня

Оглавление

Введение. 2

1. Технологии виртуализации. 3

1.1 Виртуализация сегодня. 3

1.1.1 Монолитный гипервизор. 3

1.1.2 Микроядерный гипервизор. 3

1.2 Программная Паравиртуализация. 3

1.3 Программная полная виртуализация. 3

1.4 Аппаратная виртуализация. 3

2. Основные задачи и область применения виртуализации. 3

2.1 Основные задачи, которые решаются с помощью виртуализации. 3

2.2 Виртуализация серверов. 3

2.2.1 Виртуализация серверов на базе VMware vSphere. 3

2.2.2 Виртуализация серверов на базе Microsoft Hyper-V.. 3

2.2 Виртуализация серверов уровня операционной системы. 3

2.3 Виртуализация приложений. 3

2.4 Виртуализация представлений. 3

2.5 Виртуализация рабочих столов. 3

Заключение. 3

Список использованных источников. 3

 



Введение

Бурное развитие рынка технологий виртуализации за последние несколько лет произошло во многом благодаря увеличению мощностей аппаратного обеспечения, позволившего создавать по-настоящему эффективные платформы виртуализации, как для серверных систем, так и для настольных компьютеров. Технологии виртуализации позволяют запускать на одном физическом компьютере (хосте) несколько виртуальных экземпляров операционных систем (гостевых ОС) в целях обеспечения их независимости от аппаратной платформы и сосредоточения нескольких виртуальных машин на одной физической. Виртуализация предоставляет множество преимуществ, как для инфраструктуры предприятий, так и для конечных пользователей. За счет виртуализации обеспечивается существенная экономия на аппаратном обеспечении, облуживании, повышается гибкость ИТ-инфраструктуры, упрощается процедура резервного копирования и восстановления после сбоев. Виртуальные машины, являясь независимыми от конкретного оборудования единицами, могут распространяться в качестве предустановленных шаблонов, которые могут быть запущены на любой аппаратной платформе поддерживаемой архитектуры.

Виртуализация является одной из ключевых технологий, позволяющей уже сегодня построить и эксплуатировать управляемую, надежную, безопасную и максимально эффективную ИТ-инфраструктуру. По мере развития ее возможностей все отчетливее просматривается путь к полностью динамическому предприятию, в котором информационные технологии будут гибко и быстро настраиваться на практически любые изменения в бизнесе.

Преимущества виртуальных машин очевидны, особенно если принять во внимание, что большинство рабочих нагрузок используют лишь малую часть общей мощности оборудования. При согласовании нагрузок в отношении процессорной мощности и потребления памяти ИТ-организация может сократить количество физических серверов, необходимых для поддержки бизнеса. Типичный уровень загрузки сервера составляет 15%, а 85% общей мощности сервера не используются. Повышение уровня использования даже до 60% означает четырехкратное уменьшение занимаемой площади, количества оборудования и энергопотребления для питания и охлаждения таких серверных ферм. Обычно этот процесс называется консолидацией серверов.



Технологии виртуализации

Виртуализация сегодня

Идея виртуализации была предложена еще фирмой IBM, задолго до появления Windows. Но архитектура процессора x86 фирмы Intel, не поддерживающей виртуализацию, незаслуженно вытеснила эту технологию из широкой IT-практики. Дело в том, что в архитектуре x86 все аппаратные устройства (контроллеры жестких дисков, видеоконтроллеры, таймеры и прочее) проектировались на работу только с одной ОС.

В наши дни виртуализация на платформах Windows принимает одну из двух форм: тип 2 и гибридная (hybrid). Типичным примером виртуализации типа 2 является виртуальная машина Java. Еще один пример — общеязыковая среда выполнения (common language runtime, CLR) платформы.NET Framework. В обоих случаях все начинается с базовой ОС, то есть, с ОС, которая устанавливается непосредственно на физическое оборудование. Поверх базовой ОС работает монитор виртуальных машин (Virtual Machine Monitor, VMM), в задачу которого входит создание виртуальных машин и управление ими, распределе­ние ресурсов между машинами, обеспечение изоляции машин друг от друга. Иными словами, в данном сценарии VMM играет роль уровня виртуализации (virtualization layer). Затем поверх VMM работают уже гостевые приложения, в данном случае, приложения Java или.NET. Эта архитектура показана на рис. 3-1. Очевидно, что ее производитель­ность оставляет желать лучшего, поскольку приложениям на пути к оборудованию при­ходится проходить как через VMM, так и через базовую ОС.


 

 

Рис. 1. 1  Архитектура виртуализации типа 2

 

Большинству ИТ-профессионалов, вероятно, более знакома гибридная виртуализации, проиллюстрированная на рис. 3-2. Здесь непосредственно с

оборудованием общаются как базовая ОС, так и VMM (хотя к различным аппаратным компонентам они имеют разный доступ), а гостевые ОС работают поверх уровня виртуализации. Если говорить точнее, в этой конфигурации VMM также должен проходить через базовую ОС, чтобы получить доступ к оборудованию. Однако как базовая ОС, так и VMM работают в режиме ядра и потому, по сути, конкурируют за обладание ресурсами ЦП. Базовой системе циклы процессора выделяются по мере надобности в ее контексте, затем циклы передаются VMM, a VMM передает циклы гостевым ОС. Процесс повторяете снова. Гибридная форма работает быстрее формы типа 2, поскольку в первом случае VMM работает в режиме ядра, а во втором — в пользовательском режиме.

Именно гибридный подход к VMM используется в двух популярных решениях вир­туализации от Microsoft: в Microsoft Virtual PC 2007 и в Microsoft Virtual Server 2005 R2. И хотя производительность его выше, чем у виртуальных систем типа 2, она все еще не так высока, как была бы у двух раздельных физических компьютеров.

VMM типа 2 называют еще машинами с виртуализацией процессов, посколь­ку в них в качестве «гостей» физической системы изолируются процессы (службы или при­ложения). Гибридные VMM называют машинами с виртуализацией системы, поскольку на них в качестве «гостей» изолируются целиком операционные системы, например Windows или Linux.

В наши дни имеется и третий тип технологии виртуализации — VMM типа 1 или технология гипервизора. Гыпервизор (hypervisor) — это программный уровень, распо­ложенный непосредственно над оборудованием и под одной или несколькими ОС. Его основное назначение — организовать изолированные среды выполнения, называемые разделами (partition), внутри которых будут работать виртуальные машины с гостевы­ми ОС. Каждому разделу выделяется собственный набор аппаратных ресурсов, в кото­рый входят память, процессорное время и устройства, а гипервизор отвечает за орга­низацию доступа к реальному оборудованию.

На рис. 3-3 показана простая форма VMM типа 1, в которой VMM (гипервизор) ра­ботает непосредственно на «голом железе» (на оборудовании), а поверх VMM работает несколько гостевых ОС.

Рис. 1.3 Архитектура виртуализации типа 1

Забегая вперед, виртуализация, основанная на гипервизоре, обладает наилучшей производительностью. Она реализована в Windows Server 2008. Можно сравнить два варианта VMM типа I: монолитный и мик­роядерный.




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: