Обобщённо булевы решётки, булевы решётки

Всюду далее под словом «решётка» понимается произвольная дистрибутивная решётка с 0.

Решётка L называется обобщённой булевой, если для любых элементов  и d из L, таких что  существует относительное дополнение на интервале , т.е. такой элемент  из L, что  и .

(Для , , интервал | ; для , можно так же определить полуоткрытый интервал | ).

 

ТЕОРЕМА 1.3. (О единственности относительного дополнения в обобщённо булевой решётке). Каждый элемент обобщённо булевой решётки L имеет только одно относительное дополнение на промежутке.

Доказательство. Пусть для элемента  существует два относительных дополнения  и  на интервале . Покажем, что . Так как  относительное дополнение элемента  на промежутке , то  и , так же  относительное дополнение элемента  на промежутке , то  и .

Отсюда

,

таким образом , т.е. любой элемент обобщённой булевой решётки имеет на промежутке только одно относительное дополнение.

 

Решётка L называется булевой, если для любого элемента  из L существует дополнение, т.е. такой элемент  из L, что  и

ТЕОРЕМА 1.4. (О единственности дополнения в булевой решётке). Каждый элемент булевой решётки L имеет только одно дополнение.

Доказательство аналогично доказательству теоремы 1.3.

 

ТЕОРЕМА 1.5.   (О связи обобщённо булевых и булевых решёток).

Любая булева решётка является обобщённо булевой, обратное утверждение не верно.

Доказательство. Действительно, рассмотрим произвольную булеву решётку L. Возьмём элементы a и d из L, такие что . Заметим, что относительным дополнением элемента a до элемента d является элемент , где a’ – дополнение элемента a в булевой решётке L. Действительно, , кроме того . Отсюда следует, что решётка L является обобщённо булевой.

Идеалы

 

Подрешётка I решётки L называется идеалом, если для любых элементов  и  элемент  лежит в I. Идеал I называется собственным, если . Собственный идеал решётки L называется простым, если из того, что  и  следует  или .

Так как непустое пересечение любого числа идеалов снова будет идеалом, то мы можем определить идеал, порождённый множеством H в решётке L, предполагая, что H не совпадает с пустым множеством. Идеал, порождённый множеством H будет обозначаться через (H]. Если , то вместо  будем писать  и называть   главным идеалом.

ТЕОРЕМА 1.5. Пусть L – решётка, а H и I – непустые подмножества в L, тогда I является идеалом тогда и только тогда, когда если , то , и если , то .

Доказательство. Пусть I – идеал, тогда  влечёт за собой , так как I – подрешётка. Если , то  и условия теоремы проверены.

Обратно, пусть I   удовлетворяет этим условиям и . Тогда  и так как , то , следовательно, I – подрешётка. Наконец, если  и , то , значит,  и I является идеалом.

 

 



Глава 2

Конгруэнции

 

Отношение эквивалентности (т.е. рефлексивное, симметричное и транзитивное бинарное отношение)  на решётке L называется конгруэнцией на L, если  и  совместно влекут за собой  и   (свойство стабильности). Простейшими примерами являются ω, ι, определённые так:

(ω) ; (ι) для всех .

Для  обозначим через   смежный класс, содержащий элемент , т.е. ‌|

Пусть L – произвольная решётка и . Наименьшую конгруэнцию, такую, что  для всех , обозначим через  и назовём конгруэнцией, порождённой множеством .

ЛЕММА 2.1. Конгруэнция существует для любого .

Доказательство. Действительно, пусть Ф = |  для всех . Так как пересечение в решётке  совпадает с теоретико-множественным пересечением, то  для всех . Следовательно, Ф = .

 

В двух случаях мы будем использовать специальные обозначения: если  или  и - идеал, то вместо мы пишем  или  соответственно. Конгруэнция вида  называется главной; её значение объясняется следующей леммой:

ЛЕММА 2.2. = | .

Доказательство. Пусть , тогда , отсюда . С другой стороны рассмотрим , но тогда . Поэтому  и .

Заметим, что  - наименьшая конгруэнция, относительно которой , тогда как  - наименьшая конгруэнция, такая, что содержится в одном смежном классе. Для произвольных решёток о конгруэнции почти ничего не известно. Для дистрибутивных решёток важным является следующее описание конгруэнции :

 ТЕОРЕМА 2.1. Пусть - дистрибутивная решётка,  и .  Тогда  и .

 Доказательство. Обозначим через Ф бинарное отношение, определённое следующим образом:  и .

 Покажем, что Ф – отношение эквивалентности:

1) Ф – отношение рефлексивности: x·a = x·a; x+b = x+b;

2) Ф – отношение симметричности:

  x·a = y·a и x+b = y+b  y·a = x·a и y+b = x+b ;

3) Ф – отношение транзитивности.

Пусть  x ·a = y·a и x+b = y+b и пусть   y·с = z·с и y+d = z+d. Умножим обе части x·a = y·a на элемент с, получим x·a·c = y·a·c. А обе части y·с = z·с умножим на элемент a, получим y·c·a = z·c·a. В силу симметричности x·a·c = y·a·c = z·a·c. Аналогично получаем x+b+d = y+b+d = z+b+d. Таким образом .

Из всего выше обозначенного следует, что Ф – отношение эквивалентности.

Покажем, что Ф сохраняет операции. Если  и z L, то (x+z) ·a = (x·a) + (z·a) = (y·a) + (z·a) = (y+z) ·a и (x+z)+b = z+(x+b) = z+(y+b); следовательно, . Аналогично доказывается, что  и, таким образом, Ф – конгруэнция.

Наконец, пусть  - произвольная конгруэнция, такая, что , и пусть . Тогда x·a = y·a, x+b = y+b, и . Поэтому вычисляя по модулю , получим

, т.е. , и таким образом, .

 

СЛЕДСТВИЕ ИЗ ТЕОРЕМЫ 2.1. Пусть I – произвольный идеал дистрибутивной решётки L. Тогда  в том и только том случае, когда  для некоторого . В частности, идеал I является смежным классом по модулю .

Доказательство. Если , то и элементы x·y·i, i принадлежат идеалу I.

Действительно .

Покажем, что .

Воспользуемся тем, что  (*), заметим, что  и , поэтому мы можем прибавить к тождеству (*)  или , и тождество при этом будет выполняться.

 Прибавим : , получим .

 Прибавим : , получим .

Отсюда . Таким образом, .

Обратно согласно лемме 2, ‌‌‌‌‍|  

Однако  и поэтому ‌‌‌‌‍|

 Если , то  откуда

.

 Действительно,  (**).

Рассмотрим правую часть этого тождества:

Объединим первое и второе слагаемые –

.

Объединим первое и третье слагаемые –

,

таким образом  (***)

Заметим, что , поэтому прибавим к обеим частям выражения (***) y:

Но , отсюда .

Следовательно, условие следствия из теоремы 2.1. выполнено для элемента . Наконец, если  и , то , откуда  и , т.е.  является смежным классом.

ТЕОРЕМА 2.2. Пусть L – булева решётка. Тогда отображение  является взаимно однозначным соответствием между конгруэнциями и идеалами решётки L. (Под  понимаем класс нуля по конгруэнции , под  понимаем решётку конгруэнций.)

Доказательство. В силу следствия из теоремы 2.1. это отображение на множество идеалов; таким образом мы должны только доказать, что оно взаимно однозначно, т.е. что смежный класс  определяет конгруэнцию . Это утверждение, однако, очевидно. Действительно  тогда и только тогда, когда  (*), последнее сравнение в свою очередь равносильно сравнению , где с – относительное дополнение элемента  в интервале .

 Действительно, помножим выражение (*) на с:

, но , а , отсюда .

Таким образом,  в том и только том случае, когда .

Примечание. Приведённое доказательство не полностью использует условие, что L – дистрибутивная решётка с дополнениями. Фактически, мы пользовались только тем, что L имеет нуль и является решёткой с относительными дополнениями. Такая решётка называется обобщённой булевой решёткой.

ТЕОРЕМА 2.3 (Хасимото [1952]). Пусть L – произвольная решётка. Для того, чтобы существовало взаимно однозначное соответствие между идеалами и конгруэнциями решётки L, при котором идеал, соответствующий конгруэнции , являлся бы смежным классом по , необходимо и достаточно, чтобы решётка L была обобщённой булевой.

Доказательство. Достаточность следует из доказательства теоремы 2.2. Перейдём к доказательству необходимости.

 Идеалом, соответствующим конгруэнции , должен быть (0]; следовательно, L имеет нуль 0.

 Если L содержит диамант , то идеал (a] не может быть смежным классом, потому что из  следует  и . Но , значит, любой смежный класс, содержащий , содержит и , и .

Аналогично, если L содержит пентагон  и смежный класс содержит идеал , то  и , откуда . Следовательно, этот смежный класс должен содержать  и .

Итак, решётка L не содержит подрешёток, изоморфных ни диаманту, ни пентагону. Поэтому, по теореме 1.2., она дистрибутивна.

Пусть  и . Согласно следствию из теоремы 2.1., для конгруэнции  идеал  так же является смежным классом, следовательно, , откуда . Опять применяя следствие из теоремы 2.1. получим,  для некоторого . Так как , то  и . Следовательно, о полу орого ледствие 4 получим, цииодержать, соответствующим конгруэнции образом мы должны только доказать, ______________ и , т.е. элемент  является относительным дополнением элемента  в интервале .

Основная теорема

(1) Пусть  - обобщённая булева решётка. Определим бинарные операции  на B, полагая  и обозначая через  относительное дополнение элемента  в интервале . Тогда  - булево кольцо, т.е. (ассоциативное) кольцо, удовлетворяющее тождеству  (а следовательно и тождествам , ).

(2) Пусть  - булево кольцо. Определим бинарные операции  и  на , полагая, что  и . Тогда  - обобщённая булева решётка.

Доказательство.

(1) Покажем, что  - кольцо.

 Напомним определение. Кольцо  - это непустое множество  с заданными на нём двумя бинарными операциями , которые удовлетворяют следующим аксиомам:

1. Коммутативность сложения:  выполняется ;

2. Ассоциативность сложения:  выполняется ;

3. Существование нуля, т.е. , ;

4. Существование противоположного элемента, т.е. , , ;

5. Ассоциативность умножения: , ;

6. Закон дистрибутивности.

 Проверим, выполняются ли аксиомы кольца:

1. Относительным дополнением до  элемента  будет элемент , а относительным дополнением  элемент . В силу того, что , а так же единственности дополнения имеем .

2. Покажем, что .

Рассмотрим все возможные группы вариантов:

1) Пусть , тогда  (Далее везде под элементом x будем понимать сумму ).

 

Аналогично получаем  в случаях , , ,  и . Заметим, что когда один из элементов равен нулю (например, c), то получаем тривиальные варианты (a+b=a+b).

 2) Пусть , а элемент c не сравним с ними. Возможны следующие варианты:

 

 

 

 

 

 

Нетрудно заметить, что во всех этих случаях , кроме того:

если c=a+b, то (a+b)+c=0=a+(b+c);

если c=0, то получаем тривиальный вариант.

Вариант, когда c равен наибольшему элементу решётки d, мы уже рассматривали.

Если c=b, то (a+b)+c=(a+b)+b=a и a+(b+c)=a+(b+b)=a.

Если c=a, то (a+b)+c=(a+b)+a=b и a+(b+c)=a+(b+a)=b.

 

Аналогично для случаев , , ,  и .

3) Под элементами нижнего уровня будем понимать элементы , , , , , , , , т.е. те элементы 4-х мерного куба, которые образуют нижний трёхмерный куб.

Под элементами верхнего уровня будем понимать элементы , , , , , , , , т.е. те элементы 4-х мерного куба, которые образуют верхний трёхмерный куб.

Под фразой «элемент верхнего уровня, полученный из элемента  нижнего уровня сдвигом по соответствующему ребру» будем понимать элемент  верхнего уровня.

Пусть a, b, c несравнимы. Рассмотрим следующие варианты:  и .

Пусть . Заметим, что это возможно только в случаях, когда  принадлежат нижнему уровню, причём лежат на позициях элементов  (рис. 1). Либо a, b остаются на своих позициях, элемент c сдвигается на верхний уровень по соответствующему ребру (рис. 2). Либо элемент a остаётся на своей позиции, элементы b, c сдвигаются на верхний уровень по соответствующему ребру (рис 3).

 

Нетрудно заметить, что во всех этих случаях .

Пусть , здесь так же .

Таким образом мы рассмотрели все основные группы вариантов расположения элементов a, b, c и во всех этих случаях ассоциативность сложения выполняется.

3. Рассмотрим в решётке элемент , к нему существует относительное дополнение  до элемента , т.е.  и . Учитывая, что в решётке  и , имеем следующее:  и . Отсюда .

4. Рассмотрим относительное дополнение элемента  до , это элемент . Таким образом:  и . Учитывая, что в решётке выполняются тождества  и  имеем следующее:  и . Отсюда .

5. Так как в решётке выполняется ассоциативность , а так же имея , то .

6. Докажем дистрибутивность  или что то же самое

 (*).

 

Докажем, что дополнения левой и правой частей выражения (*) до верхней грани  совпадают.

Нетрудно заметить, что дополнением правой части выражения (*) до элемента  будет являться элемент .

 Покажем это:

, по определению относительного дополнения элемента (), где за  приняли элемент , а элемент  за .

, по определению относительного дополнения элемента  (), где за  приняли элемент , а элемент  за .

Покажем, что и для левой части (*) элемент  будет являться относительным дополнением до верхней грани :

, т.к. .

Мы показали, что дополнения элементов  и  до верхней грани  совпадают, следовательно, в силу единственности дополнения . А значит и , т.е. дистрибутивность доказана.

Таким образом, для  все аксиомы кольца выполняются.

Заметим, что  выполняется в силу того, что , а в решётке .

Также выполняется , потому что .

Таким образом,  - булево кольцо.

Доказательство (2). Частичную упорядоченность  имеем исходя из того, что исходное булево кольцо  - частично упорядоченное множество. Кроме того  - решётка, т.к.  существуют sup(x,y) и inf(x,y), заданные соответствующими правилами:  и .

Покажем, что решётка дистрибутивна, т.е. что выполняется тождество  (*)

Рассмотрим левую часть выражения (*):

.

Рассмотрим правую часть выражения (*):

,

т.о. тождество  верно, т.е. решётка  является дистрибутивной.

Покажем, что у каждого элемента  в дистрибутивной решётке  есть относительное дополнение. Для этого рассмотрим произвольные элементы , но они так же должны являться элементами решётки , следовательно, в ней должны лежать и , которым в кольце соответствуют .

Рассмотрим элемент булева кольца  (в решётке лежит соответствующий ему элемент), заметим, что

 и  .

Поэтому элемент  будет являться в дистрибутивной решётке  относительным дополнением  до верхней грани .

Таким образом,  будет являться дистрибутивной решёткой с относительными дополнениями (обобщённой булевой).




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: