Как правило, навыки решения и доказательства неравенств, за исключением квадратичных, формируются на более низком уровне, чем уравнений. Эта особенность имеет объективную природу: теория неравенств сложнее теории уравнений. Тем не менее, многие приемы и методы решения неравенств совпадают с приемами и методами решения уравнений. В том числе, к доказательству неравенств применим метод замены переменной. При этом замена переменных, входящих в неравенство, с одной стороны, сокращает число переменных, а с другой, позволяет привести неравенство к виду, более удобному для исследования его свойств.
Пример 1. Доказать, что
[43].
При
неравенство верное.
Решение с помощью тригонометрической подстановки
Для любых
найдется угол
, что
. Исходное неравенство примет вид
.
Так как
, то
. Умножим обе части неравенства на
, получим



.
Второй множитель всегда положительный, а первый не превосходит 0, поэтому все произведение не положительно.
Алгебраическое решение
Выполним решение с помощью тождественных преобразований. Для этого рассмотрим разность




.
Оба решения по простоте реализации не уступают друг другу. Решение с помощью тригонометрической подстановки может быть дано как один из возможных способов решения.
Пример 2. Известно, что
. Доказать, что
[9].
Решение с помощью тригонометрической подстановки
Так как сумма квадратов
и
равна единице, то каждое из чисел
и
по абсолютной величине не превосходит единицы, и их можно рассматривать как синус и косинус некоторого угла. Поэтому законна подстановка
.
Аналогично
. Доказываемое неравенство запишется в виде
.
Алгебраическое решение
Алгебраическое решение в данном случае будет состоять в возведении обеих частей неравенства в квадрат и выполнении тождественных преобразований.


.
Обычно неравенство
при заданных условиях доказывается, когда изучаются приложения комплексных чисел. Но еще до изучения комплексных чисел оно может быть рассмотрено с учащимися, причем доказательство с помощью тригонометрической подстановки довольно компактно. Единственное, на что в данном случае следует обратить внимание учащихся – полное обоснование введения подстановки.






