Вопросы формирования случайных потоков событий

  Выше были показаны способы применения простейших случай­ных потоков событий. Как правило, такие потоки должны обла­дать свойствами стационарности, отсутствия последействия и од­нородности. Если выполнить все эти условия, то имитационное моделирование СМО в отличие от аналитического решения смо­жет дать дополнительно только значения качественных парамет­ров в переходном процессе, т.е. в начальный период функциони­рования СМО. Установившиеся значения с точностью до инстру­ментальной ошибки должны быть одинаковы.

Вместе с тем можно утверждать, что применение простейших потоков случайных событий при аналитическом или имитацион­ном моделировании на основе СМО сложных экономических объектов не является эффективным и, как правило, создает оши­бочное представление о качестве функционирования объекта.

В качестве примера рассмотрим сравнительно простой случай моделирования на основе СМО швейной фабрики. Пусть швейная фабрика имеет 30 машин для шитья одежды. Машины работают две смены — 18 ч. В среднем одна машина шьёт 10 заказов за час, 180 заказов за 2 смены в день. Все 30 машин за 2 смены шьют 5400 заказов. В среднем за день на фабрику поступает от 5000 до 7000 заказов. Требуется опреде­лить оптимальное количество работающих машин, длины очере­дей клиентов и среднее время нахождения в очереди.

Используя введенные выше зависимости, можно вычислить значения среднего числа машин швейной фабрики, свободных от рабо­ты No, среднюю длину очереди клиентов L и среднее время ожи­дания клиентов в очереди tож. Естественно, что для   = 5000 за­казов/день и   = 7000 заказов/день характеристики качества об­служивания будут совершенно различными. Учитывая, что среднее число заявок обслуживаемых в единицу времени, где среднее время обслуживания одного заказа одной швейной фабрики, причем θ=1/80 сут., вычислим коэффициент интенсивности нагрузки  . Величина   характеризует среднее число машин, которое необходимо иметь, чтобы обслужить за сутки (сутки приняты за единицу времени) все поступившие заказы. Таким образом, необходимо иметь все­го 27,7 машины для случая , а для 2 = 7000 необходимое количество машин составит более 38 2 = 38,8). Чтобы очередь заказчиков не росла безгранично, необходимо выполнить условие a/n < 1, где п — число машин швейной фабрики. Поскольку в нашем примере на фабрике имеется 30 швейных машин, то .

Следовательно, для входного по­тока с   =7000 заказов/день очередь будет безгранично расти.

Рассмотрев итоги приведенных расчетов, мы пришли к следу­ющим выводам.

1. Мы не можем сказать, сколько швейных машин нужно установить, чтобы обслуживать потоки с   =5000, 2 = 7000, так как а меняется от 27,7 до 38,8.

2. В связи с тем, что потоки заявок в системе рассчитаны для средних суток, расчеты величин очереди L и среднего времени ожидания обслуживания tож, как и другие качественные парамет­ры, будут рассчитаны неверно, так как интенсивность потока в различные часы суток различна и может меняться до 3—5 раз. Ко­нечно, можно рассчитать эти параметры за каждый час отдельно, но и это будет неверно, так как СМО будет находиться в постоян­ном переходном процессе. В этом случае входной поток будет не стационарным и с последействием, поскольку математическое ожи­дание числа заказов в единицу времени будет меняться в 3—5 раз, а число заказов, поступившее, например, в 20 ч, зависит от того, сколько их было фактически за каждый предыдущий час.

3. Цикл работы швейной фабрики равен одному году, так как услуги шитья обладают существенной сезонностью. Имеет место весенний и осенний пики потока заказов, а на лето и зиму приходится снижение интенсивности заказов. Весной одежду ме­няют с зимней на летнюю, а осенью наоборот. Расчет по средней интенсивности потока заказов ничего хорошего не дает, так как в пик будет перегрузка, а в спад — недогрузка. Разница между ними составляет опять же 3—5 раз.

4. Кроме того, имеет место цикличность работы и в зависимо­сти от дня недели и в течение каждого дня.

На основании этих частных выводов приходим к следующему общему выводу. Ниодин параметр нашей швейной систе­мы не будет найден достоверно как при аналитичес­ких расчетах, так и при имитационных, если будут использованы входные потоки Пуассона, обладающие стационарностью, однородностью и отсутствием последействия. Поэтому использование входных потоков такого вида или даже модифицированных в ре­альных расчетах в чистом виде неприемлемо.

Это означает, что если используется какой-то входной поток, закон распределения которого можно записать в аналитической форме, то он должен быть, по крайней мере, преобразован в по­ток, учитывающий все необходимые факторы, воздействующие на данную СМО. После этого он становится не однородным, не ста­ционарным с последействием и даже не ординарным.

Если взять поток Пуассона, то вероятность поступления за время t ровно k заявок

Блоки 2—4 модели должны воздействовать на параметры k и λтаким образом, чтобы значение скорректированного потока зависело от месяца , дня недели у2 и времени суток у3:

Вид конкретной зависимости может быть задан как аналити­чески, так и таблично или при помощи логических фраз. Только после такого преобразования входного потока можно приступать к имитационному моделированию, например, той же фабрики химчистки.

Выбор размерности входного потока заявок имеет принципиаль­ное значение при его моделировании. Например, выбранная для нашей швейной фабрики размерность, характеризующая его интенсивность, имеет значение числа заказов в сутки. Такая раз­мерность не позволяет учитывать изменения интенсивности потока в течение суток, поэтому не является верной. Правильная для нашего случая размерность входного потока заявок на обслужива­ние всегда должна учитывать тот интервал времени, за который могут произойти какие-либо изменения входного потока и, в част­ности, его интенсивности. Для нашего случая размерность должна быть число заказов в час.

Существует также еще один способ получения реальных вход­ных потоков — это использование реальных статистических дан­ных о количестве заявок, поступивших в систему за определен­ный временной период. Вполне естественным является требова­ние, чтобы длина временного периода не была меньше необходимого цикла моделирования.

Вместе с тем при таком способе формирования входного по­тока событий возникают проблемы, связанные с воздействием объекта моделирования на входной поток. Если взять наш при­мер с швейной фабрикой, то последняя обладает конечной мощ­ностью и в период перегрузки каналов очередь заявок на обслу­живание обрезается искусственно — прекращается прием заказов на данной фабрике. Такие факты нужно как-то учитывать, напри­мер путем добавления потерянных заявок в пиковый период, на­кладывать какие-то ограничения на модель данной СМО, напри­мер уменьшение длины очереди.

Для других объектов таких ограничений может и не быть, по­этому, прежде чем использовать фактическую статистику, необ­ходимо ее проанализировать на предмет возможного влияния объекта моделирования на входной поток.

Входные потоки можно получать также и опросным путем, например в форме изучения спроса на товары и услуги.

Исследование статистических данных для оценки возможнос­ти их применения при формировании входных потоков сводится к проведению анализа соответствующего динамического ряда на предмет наличия тренда, сезонности и случайной составляющей. Обычно их отфильтровывают, измеряют и лишь затем формиру­ют необходимый входной поток. Таким же образом поступают при формировании входных потоков из простейшего потока. Получен­ные составляющие ряда применяются при формировании модели входного потока.

Несколько слов о цикле моделирования. Для нашего примера моделируемый цикл не может быть меньше одного года, а имитаци­онные реализации должны учитывать данные за каждый час функ­ционирования фабрики. Только при этих условиях можно получить достоверные качественные показатели. Эти показатели не будут оди­наковыми в пределах моделируемого цикла. Они будут соответство­вать реальным значениям в каждом однотипном интервале времени. Учитывая среднюю длину очереди, среднее время ожидания обслу­живания, а также количество фактически загруженных каналов, можно спроектировать, например, такую швейную фабрику, у ко­торой эти параметры соответствуют желаемым целевым показате­лем. Для различных экономических объектов выбор цикла моделирования может быть другим, но он должен учитывать все или почти все факторы, изменяющие входной поток.

Естественно, что для других экономических объектов модель формирования потока (t) будет совершенно иной, так как эко­номические факторы могут быть другими. Однако использование потоков без коррекции, как правило, не дает нужных результатов.

Аналогичное заключение можно сделать для показателей интенсивности обслуживания и количества обслуживающих каналов. Эти показатели также подвергаются воздействию различных экономи­ческих факторов, которые следует учитывать. Например, количе­ство каналов обслуживания не может быть постоянной величиной, поскольку в реальной жизни они выходят из строя, подвергаются профилактике, дублированию и другим изменениям. Меняется также их производительность.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: