Влияние ГМ сои на потомство крыс

17.02.2009 г.

Автор: И.В.Ермакова, 2007.

Были проведены исследования на крысах Wistar по изучению влияния диеты, содержащей генетически модифицированную (ГМ) сою, на физиологическое состояние и выживаемость крысят первого поколения. Соя была модифицирована трансгеном EPSPS CP4 (линия 40.3.2). Такая модификация приводит к устойчивости этой культуры к гербициду раундапу, который применяют для борьбы с сорняками. Самкам крыс к стандартному виварному корму добавляли ГМ сою, устойчивую к гербициду раундапу (RR, линия 40.3.2) (группа «ГМ-соя»). В контрольных группах крысам добавляли либо изолят белка ГМ сои (RR) (группа «Изолят белка ГМ-сои»), либо традиционную сою Arcon SJ 91-330 (группа «Трад. соя»), либо ничего не добавляли (группа «Контроль»). Во всех случаях сою добавляли в виде соевой муки, разведенной водой (20г х 40мл). Количество рожденных крысят было одинаковым у самок «Контроль», «ГМ-соя» и «Трад. соя» (в среднем 10-11 крысят на одну самку) и несколько снижено в группе «Изолят белка ГМ-сои» (~8 крысят). Однако при этом был выявлен высокий уровень смертности крысят из группы ГМ-соя (51,6%) по сравнению с крысятами из групп «Трад-соя» (10%), «Изолят белка ГМ-сои» (15,1%) или «Контроль» (8,1%). При анализе веса крысят через две недели после рождения было обнаружено, что более трети крысят из группы «ГМ-соя» были недоразвитыми и весили меньше 20г по сравнению с крысятами из группы «Трад-соя» и группы «Контроль». Был сделан вывод, что ГМ соя, устойчивая к раундапу, оказывает негативное влияние на крыс, приводя к повышенной смертности и недоразвитости части новорожденных крысят первого поколения.

 

В этой работе сою добавляли к корму в виде соевой муки. В других наших экспериментах сою добавляли в виде соевых семян, соевого шрота или вводили в состав корма. Во всех случаях был обнаружен негативный эффект влияния ГМ-сои (высокая смертность крысят, недоразвитость выживших, нарушение репродуктивных функций).

Введение.

В последние годы все больше появляется трансгенных продуктов (ГМ-кукуруза, ГМ-картофель, ГМ-помидоры и др.) или продуктов, содержащих компоненты генетически модифицированных организмов (ГМО). Известно, что генетически модифицированные (или трансгенные) продукты - это «продукты, полученные из трансгенных растений или животных, а также содержащие добавки, полученные из ГМО, под которыми следует понимать организм или несколько организмов, любые неклеточные, одноклеточные и многоклеточные образования, способные к воспроизводству или передаче наследственного генетического материала, отличные от природных организмов, полученные с применением методов генной инженерии и содержащие генно-инженерный материал, в том числе гены, их фрагменты или комбинацию генов, не свойственных данным организмам» («Аграрная Россия», №1, 2005, стр.4).

Получение ГМ-организмов связано со «встраиванием» чужого гена в ДНК других растений или животных (производят транспортировку гена, т.е. трансгенизацию) с целью изменения свойств или параметров последних (Кузнецов и Куликов, 2005). Для встраивания гена используют вирусы, транспозоны или плазмиды (кольцевые ДНК), способные проникнуть в клетку организма и затем использовать клеточные ресурсы для создания множества собственных копий или внедриться в клеточный геном (как и «выпрыгнуть» из него) (Мировое заявление ученых, 2000).

Однако до сих пор неясно, как вновь созданные ГМ-организмы взаимодействуют с другими организмами, влияют на них и их потомство. В «Мировом заявлении ученых» указывается на четыре основных источника опасности, связанных с ГМО: 1) появление новых генов и «продуктов» их активности; 2) непредвиденные эффекты технологии; 3) взаимодействие между генами хозяина и чужеродными генами; 4) распространение «встроенных» генов как через пыльцу, так посредством горизонтальной трансформации.

Все больше поступает данных как о токсичном влиянии ГМО, так и о снижении репродуктивности и патологических изменениях в органах тех животных, которые поглощают ГМ-растения. Так, появились исследования, которые показывали вредное воздействие ГМО на насекомых и млекопитающих. Одной из первых была работа Losey et al. (1999) на личинках бабочки Монарх Danaus plexippus, проведенная в лабораторных условиях.У той группы личинок, которая кормилась растительным млечным соком (milkweed) с ГМ-пыльцой, наблюдалось замедленное развитие и низкий процент выживаемости. В другой работе уже в полевых условиях было обнаружено негативное влияние Bt-кукурузы на бабочку Монарх и на бабочку-парусник (Zangerl et al., 2001). Неожиданными оказались данные правительственных исследований Шотландского Института Урожая (Scottish Crop Institute), показавшие опасность ГМ растений для божьих коровок, которых кормили тлей с ГМ картофельных растений. Жизнь божьих коровок сокращалась до половины ожидаемой продолжительности жизни, а их плодовитость и кладка яиц значительно уменьшалась (Birch et al., 1996). Таким образом, опасность возникает не только для насекомых, которые находятся на ГМ-растениях, но и для тех, кто поедает этих насекомых.

Вредное влияние ГМ-растений на органы млекопитающих было выявлено при добавлении в корм ГМ-картофеля, или ГМ-сои, или ГМ-гороха или ГМ-кукурузы. Так, известным ученым Арпадом Пуштаем из Университета Абердина (Великобритания) (Pusztai, 1998) было обнаружено, что кормление крыс ГМ картофелем с геном лектина луковиц подснежника приводило к угнетению иммунной системы, уменьшению веса внутренних органов и патологическим изменениям в них (разрушалась печень, изменялись зобная железа и селезенка) по сравнению с крысами, которые питались обычным картофелем. В другой серии экспериментов при включении в рацион питания крыс ГМ-картофеля были выявлены серьезные изменения в желудочно-кишечном тракте крыс (быстрая пролиферация клеток слизистой оболочки) (Ewen, Pusztai, 1999). Похожие результаты были получены и Институтом питания в России при проверке двух сортов картофеля Russet Burbank, устойчивого к колорадскому жуку (Медико-биологические исследования …, 1998). Итальянская ученая M.Malatesta с соавторами (2002, 2003; Vecchio et al., 2003) проверяли влияние ГМ-сои, устойчивой к гербициду раундапу, на мышей. Патологические изменения были обнаружены в печени, поджелудочной железе и семенниках у подопытных животных. Австралийскими учеными было показано, что ГМ-горох приводит к изменениям в иммунной системе и воспалению легких у мышей (Prescott с соавт., 2005). В работе французских ученых было выявлено негативное влияние ГМ-кукурузы (GM corn MON863) на внутренние органы крыс (печень, почки, поджелудочная железа и др.). На основании проведенных исследований был сделан вывод, что этот сорт кукурузы нельзя считать безопасным (Seralini et al., 2007).

В приведенных выше научных работах было указано на серьезные изменения во внутренних органах животных, независимо от того, какой сорт или линия ГМ-культуры использовались. Одной из причин опасности ГМО может быть несовершенство «встраивания» гена в геном другого организма (Кузнецов с соавт., 2004; Wilson et al., 2004). В настоящее время наиболее распространенными являются два способа введения гена: агробактериальный и биобаллистический. При применении первого способа используют плазмиды (кольцевые ДНК) почвенных бактерий, с помощью которых и «встраивают» нужный ген в геном клетки. При биобаллистическом способе в специальной вакуумной камере производят «обстрел» растительных клеток микроскопическими вольфрамовыми или золотыми частицами с нанесенными на них генами и нуклеотидными последовательностями, управляющими этими генами (прямой ввод гена в геном клетки-хозяина). При обоих способах «встраивания» гена производят селекцию трансформированных клеток и регенерацию трансгенных растений. Наиболее распространенным является агробактериальный способ введения целевого гена. Оба способа «встраивания» гена являются несовершенными и не дают полной гарантии безопасности тех организмов, которые создаются с их помощью. При биобаллистическом способе достаточно высокая вероятность «встраивания» сразу многих копий ДНК-векторов, «обрывков» ДНК и других сбоев. При этом могут появляться растения с неизвестными свойствами. Второй способ - агробактериальный - является еще более опасным и непредсказуемым, чем первый. Cторонники ГМО утверждают, что ГМ-вставки полностью разрушаются в желудочно-кишечном тракте человека. Однако, по мнению российских генетиков «… поедание организмов друг другом может лежать в основе горизонтального переноса, поскольку показано, что ДНК переваривается не до конца и отдельные молекулы могут попадать из кишечника в клетку и в ядро, а затем интегрироваться в хромосому» (Гвоздев, 2004, стр.70). Что же касается колечек плазмид, то «кольцевая форма ДНК делает ее более устойчивой к разрушению» (Янковский и Боринская, 2004, стр.36). Так, плазмиды и ГМ-вставки были обнаружены как в содержимом кишечника (Chowdhury et al., 2003), так и в клетках разных органов животных и человека, использующих в пищу ГМО: в крови и микрофлоре кишечника мышей (Schubbert и др., 994), в крови, селезенке, печени, мозге, сердце и коже внутриутробных плодов и новорожденных мышат при добавлении в корм беременных самок мышей бактериофаг М-13 или плазмид с геном зеленого флуоресцентного белка (pEGFP-C1) (Schubbert et al., 1998); в слюне и микрофлоре кишечника человека (Mercer,1999; Coghlan, 2002).

В научной литературе практически отсутствуют данные о воздействии ГМ-растений на потомство млекопитающих. Проведение таких экспериментов очень важно, поскольку мы имеем дело с искусственной модификацией растений. В результате генетических манипуляций создаются растения, неизвестные природе. Важной задачей является изучение взаимодействия ГМ-растений с другими живыми организмами, их влияние на эти организмы и их потомство. Целью настоящей работы было исследование воздействие ГМ-сои (RR, линия 40.3.2), устойчивой к гербициду раундапу, на физиологическое состояние и выживаемость крысят первого поколения.

Методика.

В экспериментах участвовали 4 группы крыс Wistar, весом 200-220гг. Самок крыс первой группы («Контроль») кормили стандартным виварным кормом без каких-либо добавок. Самки трех других групп получали к корму добавку в виде соевой муки, разведенной водой. Самкам второй группы к стандартному виварному корму добавляли соевую муку ГМ сои, устойчивую к гербициду раундапу (трансген EPSPS CP4, Roundup Ready, RR, линия 40.3.2, Monsanto, содержание белков ~35%). Самкам третьей группы к корму добавляли соевую муку Изолята белка ГМ-сои (RR, линия 40.3.2, содержание белков ~ 90%), а четвертой – соевую муку традиционного сорта сои Arcon SJ 91-330 (содержание белков ~35%). Поставщиком соевой муки была американская компания ADM. Муку ГМ сои и Трад. сои получали путем помола соевых семян в соответствующих компаниях. В составе стандартного виварного корма не было сои или соевого шрота. Таким образом, в экспериментах участвовало четыре группы крыс: 1-я группа – «Контроль», 2-я группа - «ГМ-соя»; 3-я группа – «Изолят белка ГМ-сои», 4-я группа – «Трад. соя». Исследования проводили одновременно со всеми группами.

Было проведено три серии экспериментов на разных крысах. Каждую последующую серию экспериментов на новых крысах повторяли через 2-3 месяца. Сою добавляли к виварному корму самкам крыс Wistar за две недели до спаривания, во время спаривания, беременности и выкармливания крысят. Процедура эксперимента была следующей. В каждой клетке находилось по три самки, которым к стандартному виварному корму добавляли соевую пасту (20г соевой муки, разведенной 40 мл воды): на каждую крысу по 5-7г соевой муки. Соевую пасту ставили в отдельной плошке внутрь клетки. Через две недели после начала кормления в клетку самок подсаживали по очереди двух самцов (по три дня каждый). Перед рождением крысят каждую самку отсаживали в отдельную клетку. После рождения крысят количество сои увеличивали до 1г на одного родившегося крысенка, а после того, как крысята подрастали и начинали есть сами, увеличивали до 2-3г. Регистрировали вес крысят, которые родились, примерно, в одно и то же время + 1-2 дня (~80%крысят), и подсчитывали количество родивших самок, число рожденных и умерших крысят. Было исследовано 30 самок и 221 крысенок. У части крысят были извлечены органы для определения веса и гистологического анализа. Органы фиксировали в растворе формальдегида 0.1M PBS, pH7.2.

Статистический анализ.

Для статистического анализа уровня смертности использовали One-Way ANOVA с применением Newman-Keuls теста для долевого участия; для анализа веса использовали Mann-Whitney, для распределения веса у крысят - Chi-square в программе StatSoft Statistica v6.0 Multilingua (Россия).

Результаты

После добавления к общевиварному корму самок до спаривания, во время спаривания, беременности и лактации генетически модифицированной сои в группах «ГМ-соя» была выявлена высокая смертность крысят (~ 51,6%), которая была статистически достоверно выше, чем смертность крысят в группах «Изолят белка ГМ сои» (15,1%), «Трад. соя» (10%) и «Контроль» (8,1%) (табл.1,2; рис.1). Высокая смертность крысят из группы «ГМ-соя» наблюдалась у всех самок во всех трех сериях, при этом наблюдалось некоторое снижение уровня смертности от серии к серии, но оно было статистически недостоверным (рис.2) и, возможно, было связано с уменьшением свежести соевой муки. Уровень смертности крысят в группе «Изолят белка ГМ-сои» был ниже, чем в группе «ГМ соя», но выше, чем в группах «Трад. Соя» и «Контроль». В последних двух случаях различие было статистически недостоверным.

ГМ соя не повлияла на рождаемость крысят: в среднем на одну самку было 10-11 крысят как и в группах «Контроль» и «Трад. соя» (табл.1). В то же самое время рождаемость крысят в группе «Изолят белка ГМ-сои» была достоверно меньше, чем в других группах (в среднем на одну самку ~8 крысят).

Смертность крысят в группах «Контроль», «Трад. соя» и «Изолят белка ГМ-сои» наблюдалась в течение двух недель, а в группе «ГМ-соя» - в течение трех недель.

Анализ веса крысят через две недели после рождения показал пониженный вес у крысят из группы «ГМ-соя» по сравнению с весом крысят из групп «Трад. соя» и «Контроль» (табл.3 А, Б), при этом более трети крысят из группы «ГМ-соя» имели очень низкий вес (менее 20г) по сравнению с группами «Контроль» и «Трад-соя», что свидетельствовало об ослабленном состоянии большого количества крысят из группы «ГМ-соя» (табл.3 Б, В; рис.3, 4). Были также обнаружены небольшие изменения по ряду изучаемых параметров и при добавлении традиционной сои (табл.3, А, Б, В). Так, вес основной части крысят из группы «Трад. соя» был меньше, чем вес крысят из «Контроля», и, в основном, приходился на интервал от 20 до 30г (табл.3). Любопытно, что масса внутренних органов ослабленных крысят из группы «ГМ-соя» была значительно меньше, чем масса органов нормальных крысят из других групп, за исключением массы мозга (табл.4). Это свидетельствовало о том, что эти крысята были того же возраста, что и крысята из контрольных групп, но произошло недоразвитие внутренних органов, возможно, из-за гормонального дисбаланса.

Таким образом, были выявлены серьезные статистически достоверные изменения по развитию и выживаемости у крысят из группы «ГМ-соя» по сравнению с крысятами из групп «Трад соя», «Изолят белка ГМ-сои» и «Контроль».

Обсуждение

Проведенные исследования показывают, что добавление к корму ГМ сои, устойчивой к гербициду раундапу, привело к повышенной смертности и пониженному весу крысят первого поколения, что не наблюдалось при добавлении традиционной сои, изолята белка ГМ сои или при отсутствии соевых добавок. Несмотря на то, что в группе «Контроль» крысята получали меньше питательных веществ, они были более жизнеспособными и здоровыми, чем в других группах и, особенно, в группе «ГМ-соя». Можно выдвинуть несколько версий негативного влияния ГМ сои на потомство. С одной стороны, это может быть связано с неустойчивостью и нестабильностью генетической конструкции и проникновением чужеродных генов, в том числе и фрагментов плазмид, в клетки репродуктивных органов и в половые/стволовые клетки животных согласно многочисленным экспериментальным данным (Gruzza et al., 1993; Schubbert с соавт., 1996, 1998; Netherwood et al., 1999). Нестабильность генетической вставки была показана для сортов трансгенной сои (Windels et al., 2001) и трансгенного риса (Yang et al., 2005).

Так, анализ генома трансгенного риса показал наличие 4-х встроенных копий фрагментов ДНК в растениях из одной линии, а также значительную нестабильность самой конструкции (Yang et al., 2005). Известно, что нестабильность генетической конструкции – это способность к перемещению в геноме и амплификации с течением времени.

Не исключено и мутагенное воздействие вновь созданных ГМ-организмов на животных, поглощающих их, на что неоднократно указывали в своих работах Кузнецов и Куликов (2004, 2005), Wilson et al., (2006) и многие другие.

Причиной негативного влияния могло быть накопление токсичного гербицида раундапа в растениях, устойчивых к нему, и, таким образом, вместе с растением поглощалось и само токсическое вещество (Richard с соавт., 2005). Однако компания ADM, распространяющая соевую муку, проводит тщательную проверку сои на наличие токсичных химических веществ, в том числе и глифосата, основного компонента раундапа. К тому же ни самки, ни подросшие крысята, которые начинали сами есть ГМ сою, не болели и не умирали. В связи с этим предполагается, что наиболее вероятными являются первые две версии. Подтверждением этих версий является отсутствие высокой смертности крысят, матерей которых подкармливали мукой изолята белка ГМ-сои, содержащей, в основном, белки.

Полученные данные свидетельствуют о том, что ГМ-соя, устойчивая к раундапу, может представлять определенную опасность для живых организмов. Негативный эффект ГМ-сои может проявиться на потомстве этих животных. Природа вновь создаваемых генетически модифицированных организмов недостаточно изучена и мало понятна. Необходимы комплексные исследования влияния ГМО на растения и животных и разработка новых, более совершенных способов встраивания генов, с помощью которых создавались бы растения, безопасные для человека, животных и окружающей среды.

Подписи к рисункам

Рис.1. Уровень смертности крысят первого поколения в четырех группах крыс (в %). По оси абсцисс – разные группы, по оси ординат – уровень смертности в %.

Рис.2. Динамика уровня смертности крысят в группе «ГМ-соя» в трех повторных сериях. По оси абсцисс – серии экспериментов, по оси ординат – уровень смертности в %.

Рис 3. Пометы 9-ти дневных крысят из группы «Tрад-соя» (I) и из группы «ГМ-соя» (II). Хорошо видна разница между этими группами: крысята из группы «Трад-соя» (I) практически одного размера, а крысята из группы «ГМ-соя» (II) имеют разные размеры. Самые маленькие крысята из группы «ГМ-соя» умерли через 2-3 дня.

Рис.4. Крысята одного возраста (19 дней) из двух разных групп: большой нормальный крысенок - из группы «Контроль», маленький недоразвитый крысенок – из группы «ГМ-соя».

Таблицы

Табл. 1а Данные смертности крысят в первых двух сериях (через три недели)

Группы Число родившихся крысят Кол-во родившихся крысят на одну самку (целые числа) Число умерших крысят Кол-во умерших крысят в%
Контроль 44 ~11 3 (p=0,000118)* 6,8%
ГМ-соя 45 ~11 25 55,6%
Традиц. соя 33 ~11 3 (p=0,000103)* 9.0%

*- по сравнению с группой «ГМ-соя»

Табл.1б. Объединенные данные смертности крысят по трем сериям (через три недели)

Группы Число родившихся крысят Кол-во родившихся крысят на одну самку (целые числа) Число умерших крысят Число умерших крысят в %
Контроль 74 ~11 6 p<0.001* 8.1% p<0.001*
ГМ-соя 64 ~11 33 51.6%
Изолят белка ГМ-сои 33 ~8 5 p<0.01* 15.1% p<0.01*
Трад соя 50 ~10 5 p<0.001* 10% p<0.001*

*- по сравнению с группой «ГМ-соя»

Табл.2. Число умерших крысят в группе «ГМ-соя» по трем сериям.

Самки Число родившихся крысят Количество умерших крысят Количество умерших крысят в %
1 самка 11 7 64%
2 самка 8 4 50%
3 самка 13 6 46%
4 самка 13 8 62%
5 самка 12 5 42%
6 самка 7 3 43%

Табл.3 Вес крысят по группам через 2 недели после рождения

А. Средний вес крысят в трех группах в двух первых сериях.

Группы Средний вес (г) Стандартное отклонение (SD) Стандартная Ошибка (SE)
Контроль 30.03 *(p<0.005) + 6.2 + 1.1
ГМ-соя 23.95 + 7.3 + 1.5
Трад-соя 27.1 *(p<0.1) + 3.3 + 0.9

* – по сравнению с группой «ГМ-соя»

Б. Распределение веса крысят в трех группах в двух первых сериях

Группы 50-40 грамм 40-30г 30-20г 20-10г
Контроль 12,5% 37,5% 44% 6% (p<0.01)*
ГМ-соя 0% 23% 41% 36%
Трад-соя 0% 20% 73,3% 6,7% (p<0.05)*

* – по сравнению с группой «ГМ-соя»

В. Объединенные данные распределения веса крысят во всех группах в трех сериях

Группы 50-40 грамм 40-30г 30-20г 20-10г
Контроль 8,2% 38,8% 40,8% 12,2% (p<0.05)*
ГМ-соя 0% 26% 40,7% 33,3%
Изолят белка ГМ-сои 0% 21% 72% 7,0% (p<0.05)*
Трад-соя 0% 9,7% 77,4% 12,9% (p<0.05)*

*- по сравнению с группой ГМ-соя

Табл.4. Примеры абсолютной массы органов крысят из разных групп (фиксация в

formaldehyde 0.1M PBS, pH7.2).

NN крысенка Тело тела Печень Легкие Сердце Почки Семенники Мозг
N26 контроль 69 3.80 1.20 0.37 0.44/0.44 0.34/0.34 1.67
N27 контроль 72 4.63 1.55 0.38 0.52/0.42 0.3/0.3 1.6
N30 Трад-соя 62 4.28 0.95 0.36 0.38/0.38 0.22/0.26 1.76
N31 Трад-соя 63 4.35 0.94 0.39 0.42/0.42 0.22/0.23 1.66
N28 ГМ-соя 35 1.83 0.6 0.19 0.28/0.28 0.13/0.14 1.60
N29 ГМ-соя 30 1.68 0.5 0.20 0.19/0.20 0.14/0.18 1.54

О ситуации с ГМО в России и мире. И.В.Ермакова

 

Россия пошла по пути рыночной экономики, при которой бизнес играет основную роль. К сожалению, недобросовестные предприниматели для получения прибыли часто проталкивают некачественные товары. Особенно это опасно, когда проталкиваются товары, основанные на применении плохо изученных новейших технологий. Для того, чтобы избежать ошибок, необходим жесткий контроль на государственном уровне за производством и распространением товаров. Отсутствие должного контроля может привести к серьезным ошибкам и тяжелым последствиям, что и произошло при применении генетически модифицированных организмов (ГМО) в продуктах питания. К ГМО относятся ГМ-бактерии, ГМ-растения и ГМ-животные.

Масштабное распространение в России ГМО, опасность которых доказана учеными разных стран мира, ведёт к бесплодию, всплеску онкологических заболеваний, генетических уродств и аллергических реакций, к увеличению уровня смертности людей и животных, резкому сокращению биоразнообразия и ухудшению состояния окружающей среды.

Получение ГМО связано со «встраиванием» чужого гена в ДНК других растений или животных (производят транспортировку гена, т.е. трансгенизацию) с целью изменения свойств или параметров последних (Кузнецов и Куликов, 2005), например, получение растений, устойчивых к заморозкам, или к насекомым, или к пестицидам и так далее. В результате такой модификации происходит искусственное внедрение новых генов в геном организма, т.е. в тот аппарат, от которого зависит строение и развитие самого организма и следующих поколений. Настоящий обзор посвящен, в основном, ГМ-растениям.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: