Постановка задачи линейного программирования

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

 

Шадринский Государственный Педагогический институт

 

 

КОМПЬЮТЕРНОЕ МАТЕМАТИЧЕСКОЕ

МОДЕЛИРОВАНИЕ В ЭКОНОМИКЕ.

Курсовая работа.

 

Выполнили:

Студентки 201 гр.

Благодарева Юлия Григорьевна

Реутова Елена Александровна

Руководитель:

Пайвина Юлия Васильевна

 

Шадринск, 2003 г.

Оглавление

Введение…………………………………………………….….……..3

1. Постановка задачи линейного программирования….…...4

2. Симплекс-метод……………………………………………14

3. Контрольные вопросы и задания…………………………21

Заключение……………………………………………….…………..24

Литература…………………………………………………….………25

Введение

 

В последние годы мы особенно отчетливо ощутили, что нет ничего важнее для общества, чем здоровая экономика. Научное исследование основ функционирования экономики – сложная и интересная деятельность. Математические методы в ней играют возрастающую с каждым десятилетием роль, а реализация возникающих при этом математических моделей и получение практически важных результатов невозможны без ЭВМ.

 

ПОСТАНОВКА ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

В данном параграфе рассматривается лишь один из разделов - оптимальное пла­нирование - и внутри него одна из моделей, так называемое, линейное программи­рование. Это связано с относительной простотой и ясностью как содержательной постановки соответствующих задач, так и методов решения. О таких интересных, но более сложных проблемах, как выпуклое программирование, динамическое программирование, теория игр мы лишь упомянем, отсылая читателей за подроб­ностями к специальной литературе. Отметим еще, что термин «программирование» в названии этих разделов теории оптимального планирования весьма условен, связан с историческими обстоятельствами и к программированию в общепринятом сейчас смысле прямого отношения не имеет.

Общеизвестно, сколь важно для решения экономических задач планирование - как при рыночной, так и при плановой экономике. Обычно для решения экономи­ческой проблемы существует много способов (стратегий), отнюдь не равноценных по затратам финансов, людских ресурсов, времени исполнения, а также по дости­гаемым результатам. Наилучший из способов (по отношению к выбранному критерию - одному или нескольким) называют оптимальным. Приведем простей­ший пример такого рода задач.

Пример 1. На некотором предприятии могут выпускать изделия двух видов (например, мотоциклы и велосипеды). В силу ограниченности возможностей сборочного цеха в нем могут собирать за день либо 25 мотоциклов (если не собирать вообще велосипеды), либо 100 велосипедов (если не собирать вообще мотоциклы), либо какую-нибудь комбинацию тех и других, определяемую прием­лемыми трудозатратами. Склад может принять не более 70 изделий любого вида в сутки. Известно, что мотоцикл стоит в 2 раза дороже велосипеда. Требуется найти такой план выпуска продукции, который обеспечил бы предприятию наиболь­шую выручку.

Такого рода задачи возникают повседневно в огромном количестве, но в реаль­ности число изделий гораздо больше двух, да и дополнительных условий тоже больше. Решить подобную задачу путем перебора всех мыслимых вариантов часто невозможно даже на ЭВМ. В нашем примере, однако, в ЭВМ нет необходимости - задача решается очень легко.

 

Обозначим число выпускаемых за день мотоциклов х, велосипедов - у. Пусть т1 - время (в часах), уходящее на производство одного мотоцикла, а т2 - одного велоси­педа. Из условия задачи следует, что т1 = 4т2. Если завод работает круглосуточно, то, очевидно, при одновременном выпуске обоих изделий

 

или

 

Но – 24/т2 - число максимально производимых велосипедов, равное 100. Итак, воз­можности производства определяют условие

 

 

 

Еще одно условие - ограниченная емкость склада:

 

Обозначим цену мотоцикла а1 (руб.), цену велосипеда - а2 (руб.). По условию a1 = 2а2. Общая цена дневной продукции

 

 

 

Поскольку а2 - заданная положительная константа, то наибольшего значения следует добиваться от величины

Итак, учитывая все условия задачи, приходим к ее математической модели: сре­ди неотрицательных целочисленных решений системы линейных неравенств

 


                                                                         (7.71)

 

 

найти такое, которое соответствует максимуму линейной функции

                                   f = 2х + у.                          (7.72)

 

Проще всего решить эту задачу чисто геометрически. Построим на плоскости (х, у) область, соответствующую неравенствам (7.71) и условию неотрицательности х и у. Эта область выделена на рис.1 жирной линией. Всякая ее точка удовлетво­ряет неравенствам (7.71) и неотрицательности переменных. Пунктирные линии на рисунке - семейство прямых, удовлетворяющих уравнению f = 2х + у = с (с разны­ми значениями константы с). Вполне очевидно, что наибольшему возможному значению f, совместному с предыдущими условиями, соответствует жирная пунк­тирная линия, соприкасающаяся с областью М в точке Р.

 

 


25

О  10 20 30 40 50 60 70 80

 Рис. 1. Графическое решение задачи об оптимальном плане производства (к примеру 1)

 

Этой линии соответствует значение f = 80. Пунктирная линия правее хоть и соответствует большему значению f, но не имеет общих точек с М, левее - меньшим значениям f. Координаты точки Р (10, 60) - искомый оптимальный план производства.

Отметим, что нам «повезло» - решение (х, у) оказалось целочисленным. Если бы прямые

 

 


пересеклись в точке с нецелочисленными координатами, мы бы столкнулись со значительными проблемами. Еще больше их было бы, если бы наш завод выпускал три и более видов продукции.

Прежде чем обсуждать возникающие при этом математические проблемы, дадим формулировки нескольких классических задач линейного программирования в общем виде.

Пример 2. Транспортная задача. Некий продукт (например, сталь) вырабатыва­ется на m заводах Р1, Р2,..., Рm, причем ежемесячная выработка составляет a1, а2, …, аm тонн, соответственно. Пусть эту сталь надо доставить на предприятия Q1, Q2,..., Qk (всего k), причем b1, b2,..., bk - ежемесячная потребность этих предприятий. Наконец, пусть задана стоимость cij  перевозки одной тонны стали с завода Pi на предприятие QJ. Естественно считать, что общее производство стали равно суммар­ной потребности в ней:

a1 + a2 + … + am = b1 + b2 + … + bk                                       (7.73)

 

Необходимо составить план перевозок, при котором

1) была бы точно удовлетворена потребность в стали предприятий Q1, Q2,..., Qk;

2) была бы вывезена вся сталь с заводов PI, Р2,..., Рт;

3) общая стоимость перевозок была бы наименьшей.

Обозначим через Хij количество стали (в тоннах), предназначенной к отправке с завода Рi на предприятие QJ. План перевозок состоит из (m×k) неотрицательных чисел xij (i = 1, 2,..., m; j = 1, 2,..., k).










Таблица 7.10


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: