РУ СН – распределительное устройство собственных нужд

Вопросы.

1. Нарисовать принципиальную технологическую схему трёхконтурной АЭС и  объяснить назначение всех элементов схемы. Основные особенности АЭС.

2. Нарисовать схему конденсатора турбины и объяснить назначение и устройство.

3. Схема снабжения котлов газом. Подготовка к сжиганию газообразного топлива

4. Влияние ТЭЦ на окружающую среду.

5. Технологическая схема КЭС. Назначение каждого элемента схемы. Основные особенности КЭС.

 

 

 



Нарисовать принципиальную технологическую схему трёхконтурной АЭС и объяснить назначение всех элементов схемы.

 

3
Принципиальная технологическая схема трёхконтурной АЭС выглядит следующим образом:

                                                         
Т
   
     
   
ТСН
РУ СН
 
 

 

 


 

 


 


На схеме обозначены:

 

1. Ядерный реактор с первичной биологической защитой.

2. Вторичная биологическая защита.

3. Турбина.

4. Генератор.

5. Конденсатор.

6. Циркуляционные насосы.

7. Регенеративный теплообменник.

8. Резервуар с водой.

9. Парогенератор.

10. Промежуточный теплообменник.




Т – повышающий трансформатор.

ТСН – трансформатор собственных нужд.

РУ ВН – распределительное устройство высокого напряжения (110 кВ и выше).

РУ СН – распределительное устройство собственных нужд.

 I; II; III – контуры АЭС.

 

 

       Установка, в которой происходит управляемая цепная ядерная реакция, называется ядерным реактором 1. В него загружается ядерное топливо, например – уран –238. Ядерный реактор служит для нагрева теплоносителя и представляет из себя, в принципе, котёл.

       Биологическая защита 2 выполняет функции изолятора реактора от окружающего пространства для того, чтобы в него не проникли мощные потоки нейтронов, альфа-, бета-, гамма- лучи и осколки деления. Биологическая защита предназначена для создания безопасных условий работы обслуживающего персонала.

       Турбина 3 предназначена для преобразования энергии пара в механическую энергию вращения ротора электрического генератора. Генератор 4 вырабатывает электрическую энергию, которая поступает на повышающий трансформатор Т, где преобразуется до необходимых величин для дальнейшей передачи в линии электропередач. Часть энергии также передаётся на ТСН – понижающий трансформатор собственных нужд.

       Отработанный в турбине пар поступает в конденсатор. Конденсатор 5 служит для охлаждения пара, который, конденсируясь, затем подаётся циркуляционным насосом 6 через регенеративный обменник 7 в парогенератор 9. В регенеративном обменнике вода охлаждается до исходной величины.

       Разогретый в реакторе теплоноситель первого контура (Na) отдаёт тепло в промежуточном теплообменнике 10 теплоносителю второго контура (Na). А тот, в свою очередь, отдаёт тепло рабочему телу(H2O) в парогенераторе.

       Циркуляционные насосы служат для движения теплоносителя в контурах схемы, а также для подачи охлаждающей воды в конденсатор из резервуара 8.

       Таким образом, принципиально АЭС отличаются от ТЭС только тем, что рабочее тело на них получает тепло в парогенераторе при сжигании ядерного топлива в ядерном реакторе, а не органического топлива в котлах, как это имеет место на ТЭС.

       Многоконтурная схема АЭС обеспечивает радиационную безопасность и создаёт удобства для обслуживания оборудования. Выбор числа контуров определяется в зависимости от типа реактора и свойств теплоносителя, характеризующих его пригодность для использования в качестве рабочего тела в турбине.

 

Особенности АЭС:

           

1. Атомные электрические станции не зависят от месторасположения источника сырья, а потому могут сооружаться в любом географическом месте, в том числе и труднодоступном.

2. Для работы АЭС требуется небольшое количество топлива (100-150 т. в год).

3. Атомные станции не загрязняют атмосферу. Выбросы радиоактивных газов и аэрозолей не превышают величин, разрешённых санитарными нормами.

4. АЭС могут работать по свободному графику нагрузки.

5. Коэффициент полезного действия атомных станций 35-38 %.

 

2. Нарисовать схему конденсатора турбины и объяснить назначение и устройство.

 

 

 

 


       Конденсатор – устройство, предназначенное для охлаждения и конденсации пара, выходящего из турбины.

       Экономичность работы паровой турбины в большой степени зависит от конечного давления пара, с понижением которого увеличивается используемый тепловой перепад и возрастает КПД турбоустановки.

       Из трёх параметров пара, определяющих экономичность турбины – начальное давление, начальная температура и конечное давление, последний параметр оказывает наибольшее влияние на коэффициент полезного действия турбины. Снижение давления пара после выхода из турбины производится в конденсаторе, в котором поддерживается давление 0,005 – 0,0035 МПа.

       Конденсатор представляет из себя цилиндрический корпус, внутри которого имеется большое количество латунных трубок 2, по которым подаётся через патрубок 1 охлаждающая вода. Вода, поступающая в конденсатор имеет температуру 10 – 20 oС, проходя по трубкам нагревается до температуры 25 – 30 oС и выходит через патрубок 5.

       Пар из турбины поступает в конденсатор через патрубок 4, соприкасается с холодными трубками, конденсируется и насосом КН откачивается через патрубок 3

       Если воду для охлаждения пара забирают из реки, подают в конденсатор, а затем сбрасывают в реку, то такую систему водоснабжения называют прямоточной.

       Если воды в реке не хватает, то сооружают искусственный водоём. С одной стороны пруда вода подаётся в конденсатор, а в другую сторону пруда сбрасывается нагретая в конденсаторе вода.

       В замкнутых системах водоснабжения для охлаждения воды, нагретой в конденсаторе, сооружают градирни – специальные устройства, высотой около 50 метров. Вода вытекает струйками из отверстий лотков, разбрызгивается и стекая вниз, охлаждается. Внизу расположен резервуар, где вода собирается и затем циркуляционными насосами ЦН опять подаётся в конденсатор.

 

3. Схема снабжения котлов газом. Подготовка к сжиганию газообразного топлива.

Природный газ – высокоэффективный вид топлива. Высокая теплота сгорания, практическое отсутствие в нём серы и золы предопределяет его использование прежде всего бытовыми потребителями, отопительными котельными, а также промышленными предприятиями, расположенными вблизи городов и на городских ТЭЦ.

 

 

Схема снабжения котлов (парогенератора) газом

 

 


На схеме обозначены:

1. Трубопровод;

2. Дросселирующий клапан;

3. Газовые магистрали;

4. Клапан;

5. Диафрагма;

6. Горелки;

 

 

Поступающий по трубопроводам 1 газ дросселируется с помощью клапанов 2 до давления 0,2 – 0,3 МПа.

В случае резкого сужения сечения трубопровода происходит увеличение скорости за счёт падения давления, как при истечении через сопло. Если затем сечение трубопровода резко увеличить, то в результате трения и завихрения потока скорость гасится и переходит в тепло, а начальное давление не восстанавливается. Этот процесс называется дросселированием.

Дросселирование применяется для регулирования и для снижения давления.

Затем газ поступает в газовые магистрали котельной 3, от которых подводится к парогенератору. На подводящих к котлу трубопроводах помимо отключающей задвижки устанавливают клапан 4, регулирующий подачу газа к котлу и диафрагма 5 для замера расхода газа. В пределах парогенератора имеется разводка газа к каждой горелке 6.

На тепловых электрических станциях устанавливаются котлы большой паропроизводительности, оборудованные камерными топками.

В камерных топках сжигают газообразное топливо без всякой подготовки.

При сжигании газообразного топлива имеют место лишь две стадии – подогрев и сгорание. Первичное смесеобразование газа и воздуха осуществляется с помощью горелок, в которых организуется закручивание потока воздуха. Воспламенение газа происходит на поверхности газовой струи и затем распространяется на весь поток.

 

 




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: