Общая информация о полупроводниковых лазерах

МОСКОВСКИЙ

Ордена Ленина, ордена Октябрьской Революции

И ордена Трудового Красного Знамени

ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Им. Н. Э. Баумана

 

 

Реферат

«Полупроводниковые лазеры для

волоконно-оптических линий связи»

 

Выполнил: Слюсаренко С.А

Группа РЛ2-71

 

 

Москва 2007 г.

 

 

План

 

1. Общая информация о полупроводниковых лазерах ------------------------------ 3

2. Применения полупроводниковых лазеров ------------------------------------------ 4

3. Лазер на двойном гетеропереходе ---------------------------------------------------- 5

4. Одномодовые канальные лазеры для волоконно-оптических линий связи -- 7

5. Полупроводниковые лазеры, излучающие в области 1300..1600 нм ---------- 14

 

 

Общая информация о полупроводниковых лазерах

 

Возможность использования полупроводниковых материалов в ка­честве активного вещества давно привлекает к себе внимание физиков и инженеров. Это не удивляет, так как полупроводники имеют высокую чувствительность к внешним воздействиям. Их свойствами можно управлять в очень широких пределах, изменяя температуру или давле­ние, воздействуя на них светом или потоком заряженных частиц, вводя различные примеси. Основы теории полупроводниковых лазеров впервые изложены в публикациях И. Г. Басова, Б, М. Вула, Ю. М. Попова, задолго до появления в 1962 г. первого лазера на арсениде галлия.

Принцип действия полупроводникового лазера можно рассмотреть с помощью рис. 1. на котором показаны валентная зона полупроводника V, зона проводимости С и ширина запрещенной зоны Eg. Если предположить для простоты, что полупроводник находится при температуре Т = О К, то валентная зона будет полностью заполнена электронами, в то время как зона прово­димости будет пуста (см. рис 1а, где заштрихованная об­ласть является областью заполненных состояний). Предполо­жим теперь, что электроны каким-либо образом переведены из валентной зоны в зону проводимости. Внутри этой зоны элек­троны за очень короткое время (~ 10 с) перейдут на ее самый нижний уровень, а вск электроны вблизи максимума ва­лентной зоны также перейдут на самые нижние из незанятых уровней, так что верхушка валентной зоны будет заполнена дырками. Отсюда следует, что между валентной зоной и зоной проводимости возникает инверсия населенностей (рис. 1б). Электроны из зоны проводимости сваливаются назад в валент­ную зону (т.е. они рекомбинируют с дырками), испуская при этом фотон (рекомбинационное излучение).

 

 

Рис. 1 Принцип действия полупроводникового лазера

 

Если между зоной проводимости и валентной зоной существует инверсия населен-ностей. как показано на рис. 1б, то процесс вынужденного рекомбинационного излучения приведет к генерации при нали­чии подходящего резонатора и выполнении соответствующих по­роговых условий.

Лазерную генерацию на основе вынужденного рекомбина­ционного излучения в полупроводниковых p-n-переходах на­блюдали почти одновременно четыре группы исследователей в I962 г, причем три из них использовали GaAs.

 И настоящее время создано большое количество полупроводниковых лазеров различных типов; охлаждаемых и неохлаждаемых с различны­ми схемами возбуждения, на различных материалах: ZnS; ZnO; ZnSe; CdS; CdTe; GaSe; GaTe; GaAs; GaAs 1-xSbx; Al 1-xGa xAs; GaSb; PbS; PbSe; PbTe; InSb; InAs 1-xSbx и т.д.Эти лазеры перекрывают значительный диапазон длин волн от ультрафиолета до дальней ин­фракрасной области: 0,33; 0,37; 0,46; 0,49; 0,53; 0,59; 0,63...0,9; 0,78; 0,83...0,91; 0,9...1,5; 1,01...1,55; 2,1; 3,1; 3,1...5,4; 3...15; 4,3; 5,2; 6,5; 39...8,5; 6; 28; 8...31,2 и т. д. Большим их достоинством

3

 являются малые габариты и высокий к. п. д. (около 80%). Полупроводниковые лазеры из-за особенностей энергетической структуры активного веще­ства существенно отличаются от лазеров других типов.

Специфика процессов генерирования излучения в полупроводни­ковых лазерах во многом обусловлена системой энергетических уров­ней полупроводника. В отличие от отдельных атомов и молекул, полу­проводниковые кристаллы обладают не узкими энергетическими уровнями, а широкими полосами—зонами энергетических состо­яний. Разрешенные зоны отделены одна от другой запрещенными зонами. В полупроводнике, подвергнутом нагреву, облучению или пропус­канию тока, электроны валентной зоны, поглощая энергию, сообщае­мую извне, приобретают способность преодолевать запрещенную зону и переходить в более высокую энергетическую зону — зону проводи­мости. В результате этого образуются пары носителей заряда: элек­троны в зоне проводимости и дырки в валентной зоне, что приводит к электронно-дырочной проводимости. Возможен, очевидно, и обратный переход электронов возбужденного атома на более низкий энергети­ческий уровень: из зоны проводимости в валентную зону. В результате такого перехода пары электрон — дырка рекомбинируют, т. е. при заполнении электронами пустых мест (дырок) в валентной лоне, электрон и дырка исчезают, выделяя избыточную энергию, полученную электронами извне в процессе возбуждения атома. Этот процесс длит­ся примерно 10-10…10-12 с.

В естественных условиях при отсутствии каких-либо внешних воздействий на полупроводник, электронно-дырочные пары возникают и рекомбинируют в результате теплового движения и спонтанного испускания фотонов, причем в полупроводнике устанавливается тепловое равновесие электронов и дырок. Оно характеризуется некоторым равновесным количеством электронов в зоне проводимости и дырок в валентной зоне.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: