Клеточная инженерия panax ginseng C. A. Mey

Флора Приморского края является богатейшим потенциальным источником традиционных и новых лекарственных средств растительного происхождения. По количеству уникальных лекарственных растений, неизвестных, или малоизвестных в нашей стране, но широко используемых за рубежом, Приморский край не имеет себе равных среди других районов России. Однако, как правило, эти растения представлены редкими или исчезающими видами, что не позволяет широко использовать их в медицине.

В полной мере это относится и реликтовому дальневосточному растению - женьшеню настоящему (Panax ginseng C.A.Mey).

Установлено, что биологически активными веществами женьшеня являются гинзенозиды, и главным образом, с этой группой веществ связаны целебные свойства женьшеня (Tanaka and Kasai, 1984). Доказано, что гинзенозиды оказывают сильное иммуностимулирующее, радиопротекторное, противоопухолевое, противовоспалительное, антиязвенное действие. Также эти вещества подавляют развитие тромбов, нормализуют кровяное давление, увеличивают продолжительность жизни нейронов коры головного мозга, положительно действуют на эндокринную систему и углеводный обмен. При применении препаратов женьшеня повышается работоспособность, замедляются процессы старения. Тем не менее, использование женьшеня в медицине ограничено низкими сырьевыми запасами природного растения. Исследованиями последних лет установлено, что генетические ресурсы дикорастущего женьшеня близки к истощению (Zhuravlev et al., 1996).

Недостаток природного сырья можно преодолеть путем введения растительных клеток в культуру in vitro, т.е. в культуру клеток растущих вне организма на специально подобранных питательных средах. Введение в клеточную культуру ценных и редких растений решает одновременно две задачи: во-первых, создается возобновляемый источник сырья для выработки лекарственного препарата, во-вторых, создаются предпосылки для сохранения генофонда растения. Поэтому уже более 30 лет проводятся работы по созданию воспроизводимого биотехнологического источника гинзенозидов путем получения клеточных культур женьшеня, синтезирующих набор гинзенозидов в количествах и соотношениях, близких к нативному растению. В то же время большинство из полученных клеточных культур женьшеня отличаются от натуральных корней тем, что содержат не весь набор гинзенозидов, меньшим содержанием суммы гинзенозидов, соотношениями отдельных гинзенозидов. В настоящее время существует ряд методических приемов, направленных на активацию синтеза биологически активных веществ в культурах in vitro.

В Биолого-почвенном институте ДВО РАН из различных органов растений женьшеня получены клеточные культуры (Журавлев и др. 1990; Булгаков и др., 1991), обладающие способностью к синтезу гинзенозидов. В 1992-1997 гг. нами впервые проведено сравнительное изучение эффективности различных путей регуляции синтеза гинзенозидов в полученных культурах. Увеличения выхода биологически активных веществ женьшеня удалось добиться посредством использования селекции, светового режима культивирования, биосинтетических предшественников гинзенозидов (мевалоновой кислоты и фарнезола) и определенных фитогормонов. Разработана схема комбинированной регуляции синтеза гинзенозидов путем изменения условий культивирования и состава сред в сочетании с методами генетической инженерии. Впервые предпринята работа по получению клеточных культур женьшеня, содержащих чужеродные гены и поиску гена ответственного за увеличение синтеза гинзенозидов. Применение методов генной инженерии позволило получить ряд высокопродуктивных трансгенных корневых культур женьшеня, обладающих способностью к стабильному синтезу целевых веществ в течение продолжительного культивирования, что делает эти культуры новым перспективным источником для выработки биологически активных веществ. Используя генетическую трансформацию геном rolC из Agrobacterium rhizogenes впервые удалось вызвать морфогенез (образование побегов и листьев) в клеточной культуре женьшеня. Установлено, что побеги и листья морфогенной культуры синтезируют гинзенозиды в количествах и соотношениях, свойственных надземной части плантационного растения.

 

Вывод:

Подводя итог можно сказать, что клеточная инженерия ­­– одно из наиболее важных направлений в биотехнологии. Она основана на использовании принципиально нового объекта – изолированной культуры клеток или тканей эукариотических организмов, а также на тотипотентности – уникальном свойстве растительных клеток. Применение этого объекта раскрыло большие возможности в решении глобальных теоретических и практических задач. В области фундаментальных наук стало осуществимым исследование таких сложных проблем, как взаимодействие клеток в тканях. Клеточная дифференцировка, морфогенез, реализация тотепотентности клеток, механизмы появления раковых клеток и др. при решении практических задач основное внимание уделяется вопросам селекции, получения значительных количеств биологически ценных метаболитов растительного происхождения, в частности более дешевых лекарств, а также выращивания оздоровленных безвирусных растений, их клонального размножения и др.

 

Список литературы:

«Основы биотехнологии» Егорова, Клунова, Живухина; М. 2003.

"Биология" - еженедельное приложение к газете "Первое сентября" (№21 1998)

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: