Простые и сложные вещества

Химия занимается изучением превращений химических веществ (число известных к настоящему времени веществ более десяти миллионов), поэтому очень важна классификация химических соединений. Под классификацией понимают объединение разнообразных и многочисленных соединений в определенные группы или классы, обладающие сходными свойствами. С проблемой классификации тесно связана проблема номенклатуры, т.е. системы названий этих веществ

Индивидуальные химические вещества принято делить на две группы: немногочисленную группу простых веществ (их, с учетом аллотропных модификаций, насчитывается около 400) и очень многочисленную группу сложных веществ.

Сложные вещества обычно делят на четыре важнейших клас са: оксиды, основания (гидроксиды), кислоты, соли


 

Оксиды — это сложные вещества, состоящие из двух элементов, один из которых кислород

Кислоты — это электролиты, при диссоциации которых из положительных ионов образуются только ионы водорода (Н+)

Основания — это электролиты, при диссоциации которых из отрицательных ионов образуются только гидроксид-ионы (ОН-)

Соли — это электролиты, при диссоциации которых образуются катионы металлов и анионы кислотного остатка.

 Далее следует привести уравнения реакций, характеризующие основные свойства каждого класса соединений.

Для оксидов таким свойством является взаимодействие с водой:

 

 

Характерным свойством солей является взаимодействие друг с другом:

 

 

Различие в свойствах объясняется разным порядком связи атомов в молекулах и их расположением в пространстве, т. е. химическим строением.

Перед тем, как рассмотреть более детально каждый из классов неорганических соединений, целесообразно взглянуть на схему, отражающую генетическую связь типичных классов соединений.

В верхней части схемы помещены две группы простых веществ — металлы и неметаллы, а также водород, строение атома которого отличается от строения атомов других элементов. На валентном слое атома водорода находится один электрон, как у щелочных металлов; в то же время, до заполнения электронного слоя оболочки ближайшего инертного газа — гелия — ему недостает также одного электрона, что роднит его с галогенами.

Волнистая черта отделяет простые вещества от сложных; он символизирует, что «пересечение» этой границы обязательно затрагивает валентные оболочки атомов в простых веществах, следовательно, любая реакция с участием простых веществ будет окислительно-восстановительной.

В левой части схемы под металлами помещены их типичные соединения — основные оксиды и основания, в правой части схемы помещены соединения, типичные для неметаллов, кислотные оксиды и кислоты. Водород, помещенный в верхней части схемы, дает очень специфический, идеально амфотерный оксид — воду Н2О, которая в комбинации с основным оксидом дает основание, а с кислотным — кислоту. Водород в сочетании с неметаллами образует бескислородные кислоты. В нижней части схемы помещены соли, которые, с одной стороны, отвечают соединению металла с неметаллом, а с другой — комбинации основного оксида с кислотным.

В заключение важно показать, что причинами многообразия веществ являются их: а) качественный состав; б) количественный состав.

В настоящий момент известно более 50 тыс. неорганических и несколько миллионов органических соединений, в то время как открыто лишь 114 химических элементов. Это объясняется тем, что атомы могут соединяться в разной последовательности и в разном количественном соотношении. Так, например, азот может образовывать пять оксидов: N2O; NO; N2O3; NO2, N2O5. А сера входит в состав 11 кислот. Другая причина многообразия заключается в том, что некоторые химические элементы могут образовывать несколько простых веществ. Такое явление получило название аллотропия, а простые вещества — аллотропные видоизменения.


Гормоны

Гормоны, органические соединения, вырабатываемые определенными клетками и предназначенные для управления функциями организма, их регуляции и координации. У высших животных есть две регуляторных системы, с помощью которых организм приспосабливается к постоянным внутренним и внешним изменениям. Одна из них – нервная система, быстро передающая сигналы (в виде импульсов) через сеть нервов и нервных клеток; другая – эндокринная, осуществляющая химическую регуляцию с помощью гормонов, которые переносятся кровью и оказывают эффект на отдаленные от места их выделения ткани и органы. Химическая система связи взаимодействует с нервной системой; так, некоторые гормоны функционируют в качестве медиаторов (посредников) между нервной системой и органами, отвечающими на воздействие. Таким образом, различие между нервной и химической координацией не является абсолютным.

Гормоны есть у всех млекопитающих, включая человека; они обнаружены и у других живых организмов. Хорошо описаны гормоны растений и гормоны линьки насекомых.

Физиологическое действие гормонов направлено на:

1) обеспечение гуморальной, т.е. осуществляемой через кровь, регуляции биологических процессов;

2) поддержание целостности и постоянства внутренней среды, гармоничного взаимодействия между клеточными компонентами тела;

3) регуляцию процессов роста, созревания и репродукции.

Гормоны регулируют активность всех клеток организма. Они влияют на остроту мышления и физическую подвижность, телосложение и рост, определяют рост волос, тональность голоса, половое влечение и поведение. Благодаря эндокринной системе человек может приспосабливаться к сильным температурным колебаниям, излишку или недостатку пищи, к физическим и эмоциональным стрессам.

Изучение физиологического действия эндокринных желез позволило раскрыть секреты половой функции и чудо рождения детей, а также ответить на вопрос, почему одни люди высокого роста, а другие низкого, одни полные, другие худые, одни медлительные, другие проворные, одни сильные, другие слабые.

В нормальном состоянии существует гармоничный баланс между активностью эндокринных желез, состоянием нервной системы и ответом тканей-мишеней (тканей, на которые направлено воздействие). Любое нарушение в каждом из этих звеньев быстро приводит к отклонениям от нормы. Избыточная или недостаточная продукция гормонов служит причиной различных заболеваний, сопровождающихся глубокими химическими изменениями в организме.

Изучением роли гормонов в жизнедеятельности организма и нормальной и патологической физиологией желез внутренней секреции занимается эндокринология.

Главные эндокринные железы млекопитающих – гипофиз, щитовидная и паращитовидные железы, кора надпочечников, мозговое вещество надпочечников, островковая ткань поджелудочной железы, половые железы (семенники и яичники), плацента и гормон-продуцирующие участки желудочно-кишечного тракта. В организме синтезируются и некоторые соединения гормоноподобного действия.

Гормоны использовались первоначально в случаях недостаточности какой-либо из желез внутренней секреции для замещения или восполнения возникшего гормонального дефицита. На сегодняшний день гормональная терапия способна восполнить недостаточную секрецию практически любой эндокринной железы; прекрасные результаты дает и заместительная терапия, проводимая после удаления той или иной железы. Гормоны могут использоваться также для стимуляции работы желез. Кроме заместительной терапии, гормоны и гормоноподобные препараты используются и для других целей. Так, избыточную секрецию андрогена надпочечниками при некоторых заболеваниях подавляют кортизоноподобными препаратами. Гормоны могут применяться и как агенты, нейтрализующие действие других медикаментозных средств.

Часто гормоны применяют как специфические лекарственные средства. Так, адреналин, расслабляющий гладкие мышцы, очень эффективен в случаях приступа бронхиальной астмы. Гормоны используются и в диагностических целях. Например, при исследовании функции коры надпочечников прибегают к ее стимуляции, вводя пациенту АКТГ, а ответ оценивают по содержанию кортикостероидов в моче или плазме.

В настоящее время препараты гормонов начали применяться почти во всех областях медицины.


 

Литература:

1. Большаков А.В., Грехнев В.С., Добрынина В.И. Основы философских знаний. М. Общество "Знание" Россиии, 1997.- 453 с.

2. Философия: теория и методология: Учебное пособие под ред. М..Галкина, МЭСИ, 1991.– 426 с.

3. Философское понимание мира: Учебное пособие под ред. В.В. Терентьева, МИИТ, 1994.– 384 с.

4. Готт В.С. Философские вопросы современной физики.- М.: Высшая школа, 1988.- 343 с.

5. Савельев И.В. Курс общей физики.- т.1.-М.: Наука, 1977.- 416 с.

6. Глинка Н.Л. Общая химия.- Л.: Химия, 1983.- 702 с.

7. Перекалин В.В., Зонис С.А. Органическая химия.- М.: Просвещение, 1973.- 632 с.

8. Биохимия. Под общ. ред. Н.Н. Яковлева, М.: Физкультура и спорт, 1964.- 248 с.

9. Мэрион Дж.Б. Физика и физический мир.- М.: Мир, 1975.

10. Эрден-Груз Т. Основы строения материи.- М: Мир, 1976.

11. Гузей Л.С. и др. Химия. 9 класс: Учеб. Для общеобразоват. учреждний. – М.: Дрофа, 2002. – 288с.

12. Химия. 10 класс: Учеб. Для общеобразоват. Учреждний/ Под ред. В. И. Теренина. – М.: Дрофа, 2002. – 304 с.

13. Рузавин Г. И. Концепция современного естествознания: Учебник для вызов. – М.: Культура и спорт, ЮНИТИ, 1997. – 287 с.

14. Концепция современного естествознания: Учебник для вузов/ Под ред. Проф. В.Н. Лавриненко, В.П. Ратникова. – М.: ЮНИТИ-ДАНА, 2000. – 303 с.

15. Общая биология: Учеб. Для 10-11 кл. общеобразоват. Учреждений/ Д. К. Беляева и др. – М.: Просвещение, 1998. – 287 с.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: