Виды телескопов

Существует несколько типов оптических телескопов: телескоп-рефрактор, телескоп-рефлектор, менисковыетелескопы.

Телескоп-рефрактор

Рефракция - это преломление лучей света. Самая простая схема телескопа-рефрактора, представляет собой 2 линзы, одна - объектив, вторая - окуляр. Принцип работы телескопа, основан на преломлении лучей света и сведении их в одной точке, которая называется фокусом (F). В этой точке строится изображение объекта, который можно рассмотреть потом с помощью окуляра.

Телескоп-рефлектор

 Рефлекс - это отражение. В основе данного типа телескопа, лежит способность лучей отражаться от поверхности объектива (вогнутого зеркала в виде сферы или параболоида) и фокусироваться, на определенном расстоянии. (Приложение №11)

Менисковый телескоп

Менисковые (зеркально-линзовые) телескопы, благодаря своей простоте, получили большее распространение, чем рефракторные системы, так как они представляют собой гибрид двух предыдущих систем (для того чтобы управлять ходом лучей в них используются и линзы, и зеркала). Практически все крупные обсерватории используют именно эту технологию.

5. Возможности современных телескопов:

Прошли десятилетия. Конструкции телескопов претерпевали большие изменения. Росла их сложность, но в тоже время возрастали и их возможности. Что же можно сказать о современных телескопах? Какими возможностями они обладают?

 5.1. Телескоп без глаза

Одной из самых ненадежных деталей телескопа всегда был глаз наблюдателя. Поэтому, как только стало возможным, астрономы стали заменять глаз приборами. Если подсоединить вместо окуляра фотоаппарат, то изображение, получаемое объективом можно запечатлеть на фотопластине или фотопленке. Фотопластина способна накапливать световое излучение, и в этом ее неоспоримое и важное преимущество перед человеческим глазом. Фотографии с большой выдержкой способны отобразить несравненно больше, чем под силу рассмотреть человеку в тот же самый телескоп. Ну и конечно, фотография останется как документ, к которому неоднократно можно будет в последствии обратиться.

           5.2. Радиотелескопы

В качестве объектива радиотелескопа чаще всего выступает металлическая чаша параболоидной формы. Собранный ею сигнал принимается антенной, находящейся в фокусе объектива. Антенна связана с ЭВМ, которая обычно и обрабатывает всю информацию, строя изображения в условных цветах. Радиотелескоп, как и радиоприемник, способен одновременно принимать только какую-то длину волны. Чтобы собрать приемлемое количество информации о светилах в радиолучах, астрономы строят огромные по размерам телескопы. Сотни метров – вот тот не столь уже удивительный рубеж для диаметров объективов, который достигнут современной наукой. Кроме сбора излучаемой небесными телами энергии, радиотелескопам доступно «подсвечивание» поверхности тел Солнечной системы радиолучами. Сигнал, посланный, скажем с Земли на Луну, отразится от поверхности нашего спутника и будет принят тем же телескопом, что и посылал сигнал. Этот метод исследований называется радиолокацией. Самый грандиозный пример таких исследований – полное картографирование поверхности Венеры, проведенное АМС «Магеллан» на стыке 80-х и 90-х годов. Теперь мы знаем о рельефе Венеры лучше, чем о рельефе Земли (!), ведь на Земле покрывало океанов мешает проводить изучение большей части твердой поверхности нашей планеты. (Приложение №12)

5.3. Инфракрасные телескопы

Инфракрасные волны – это тепло. Такие телескопы не обладают способностью оптических воспринимать сразу все длины волн диапазона. Устройство, обычно, делается чувствительным к некоторым узким участкам спектра. В этом инфракрасные телескопы похожи на радиотелескопы, принимающие сигнал только на одной длине волны. Похоже и построение изображения объекта в невидимых глазу лучах в условных цветах. Часто на инфракрасных фотографиях используют оттенки красного цвета для характеристики интенсивности излучения той или иной части изображения. Во многом, конструкция самих инфракрасных телескопов схожа с конструкцией оптических зеркальных телескопов. Большая часть тепловых лучей поддается отражению обычным телескопическим объективом и фокусированию в одной точке, где и размещается прибор, измеряющий тепло.

5.4. Ультрафиолетовые телескопы

Фотографическая пленка, особенно если она специально для этого сделана, способна засвечиваться и ультрафиолетовыми лучами. Поэтому принципиальной проблемы в фотографировании ультрафиолетовых изображений не стоит. Кроме того, в значительной части ультрафиолетового диапазона удается принимать системы с зеркальным объективом и регистрирующим устройством. Ультрафиолетовые телескопы схожи по своей конструкции с инфракрасными или оптическими. Применение фильтров позволяет выделять излучение определенных участков диапазона.

5.5. Рентгеновский телескоп

Фотоны с высокими энергиями, к которым относятся и фотоны рентгеновских волн, уже пробивают всевозможные системы зеркальных объективов. Регистрация таких волн по силам счетчикам элементарных частиц, таким, как счетчик Гейгера. Попадающая в такое устройство частица вызывает кратковременный импульс тока, который и регистрируется.

5.6. Гамма-телескопы

Гамма-фотоны еще более энергичны, чем фотоны рентгеновского излучения. Их тоже регистрируют специальные устройства-счетчики, только иной конструкции. Увы, разрешение гамма-телескопов не превосходит двух-трех градусов. Гамма-телескопы сегодня регистрируют само наличие и примерное направление на так называемые гамма-вспышки – мощные всплески гамма-излучения, причин которых еще не нашли. Более или менее точно указать место вспышки позволяет одновременное наблюдение вспышки двумя-тремя гамма-телескопами. Совместное использование гамма-телескопов и телескопов, принимающих другие типы излучения, в последние годы помогло отождествлять некоторые гамма-вспышки с тем или иным видимым объектом.

Примеры телескопов

Приведу несколько примеров современных телескопов и обсерваторий.

На Паломарской обсерватории при помощи зеркально-линзового телескопа системы Шмидта был проведен обзор, состоящий из тысячи карт, запечатлевших в двух цветах объекты неба до 21-й звездной величины. Пятиметровый телескоп Паломарской обсерватории является самым старым из крупнейших телескопов мира. (Приложение №13)
На 10-метровом зеркале телескопа «Кек-1» на Гавайских островах при помощи сегментирования получено разрешение 0,02". Там же на высоте 4150 м над уровнем моря расположен телескоп «Кек-2». (Приложение №14)
Телескоп VLT (Very Large Telescope) (приложение №), который находится на севере Чили на вершине горы Паранал в пустыне Атакама на высоте 2635м над уровнем моря, состоит из четырех идентичных телескопов, размеры каждого из которых 8,2м. Все четыре телескопа смогут работать в режиме интерферометра со сверхдлинной базой и получать изображения, как на телескопе с 200–метровым зеркалом. В настоящее время производится отладка всей системы в гигантский оптический интерферометр. (Приложение №15)

                                7. Космический телескоп
     Особое значение в наш космический век придается орбитальным обсерваториям. Наиболее известная из них – космический телескоп им. Хаббла – запущен в апреле 1990 года и имеет диаметр 2,4м. После установки в 1993 году корректирующего блока телескоп регистрирует объекты вплоть до 30-й звездной величины, а его угловое увеличение – лучше 0,1" (под таким углом видна горошина с расстояния в несколько десятков километров). С помощью телескопа удалось получить снимки далеких объектов Солнечной системы, наблюдать падение кометы Шумейкеров – Леви на Юпитер и извержение Ио, изучить цефеиды и квазары, получить снимки предельно слабых галактик. Исследования с орбиты проводятся не только в оптическом, но и во всех других диапазонах электромагнитного излучения.
Астрономические данные, полученных на различных современных телескопах, накапливаются на специальных компьютерах. Обычно результаты наблюдений в течение года считаются собственностью получившего их ученого. Затем данные переходят в общее пользование. В настоящее время создаются виртуальные обсерватории, в которых будут доступны данные наблюдений с обсерваторий VLT, Космического телескопа им. Хаббла и других.

Находясь над поверхностью Земли на расстоянии свыше 600км, космический телескоп имени Хаббла внёс неоценимый вклад в астрономию. Благодаря ему мы многое поняли о процессе рождения и смерти звезд, эволюции галактик, возникновении и развитии Вселенной, благодаря ему, черные дыры из разряда теоретических гипотез перешли в разряд реальных объектов. Этот телескоп – наш глаз, которым мы рассматриваем Вселенную. Когда телескоп направлен на какой-нибудь звёздный объект, его бортовые компьютеры преобразуют показания приборов в длинные ряды чисел, которые передаются на Землю через спутники связи. Затем эти данные преобразуются в текстовую и видеоинформацию, над которой и работают учёные. На телескопе есть спектрографы и камеры, работающие в области УФ-, видимого и ИК-областей спектра.

Своё имя телескоп получил в честь астронома Эдвина П. Хаббла. После того, как в 1929 году он обнаружил, что все галактики удаляются от Земли, Хаббл выдвинул гипотезу расширения вселенной. Это было самое впечатляющее наблюдение в астрономии XX в., вызвавшее появление теории Большого Взрыва, которая объясняет, как возникла и эволюционирует наша Вселенная.

Приведу некоторые параметры данного телескопа.

Длина телескопа……..13,3 м

Диаметр……………..…4,2 м

Масса…………….....11 100 м

Высота орбиты………612 км

Конструкция телескопа позволяет астронавтам легко снимать с него приборы и другие элементы во время сеансов орбитального техобслуживания и заменять их более совершенными. Гарантия безотказной работы приборов – 20 лет. (Приложение №16)





Заключение

Я думаю, что совершенствование телескопов будет продолжаться и в дальнейшем, ведь их роль в познании Вселенной неоценима. Возможно, что моим детям в школе будут рассказывать о телескопах, которые бороздят просторы Вселенной и передают на Землю информацию с далеких звездных систем, о других галактиках. А кто-то из моих будущих внуков когда-нибудь о телескопе Хаббла будет писать в своём научном исследовании как об ушедшем в историю, но, всё же, знаменитом телескопе.  

 

      

 

Список используемой литературы

1. Учебник «Астрономия»-11класс; Е.П. Левитан, Москва, «Просвещение», 2003.

2. «Небо земли»; А.Н. Томилин, Ленинград, «Детская литература», 1974.

3. Издательский дом 1сентября; «Физика», №3, 2005.

             4. Интернет ресурсы: www.astrolab.ru/…/manager2.cgi?id=19&num=1076

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: