Метод псевдосостояний

Суть метода состоит в том, что состояния системы, потоки переходов из которых являются немарковскими, заменяются эквивалентной группой фиктивных состояний, потоки переходов из которых являются марковскими.

Условие статистической эквивалентности реального состояния и соответствующих ему фиктивных состояний в каждом конкретном случае выбирается по-разному. В качестве одного из критериев эквивалентности можно принять следующее условие:

 

 

, где li экв (t) – эквивалентная интенсивность перехода в i -той группе переходов, заменяемой реальный переход обладающей интенсивностью li (t).

За счет расширения числа состояний системы, некоторые процессы удается точно свести к марковским. Созданная таким образом новая система по своим характеристикам статистически эквивалентна или близка реальной системе, но она должна быть обязательно подвергнута обычному исследованию на адекватность, с помощью хорошо проработанного математического аппарата с использованием уравнений Колмогорова.

К числу процессов, которые введением фиктивных состояний можно точно свести к марковским, относятся процессы, происходящие в системе под воздействием потока Эрланга.

В случае потока Эрланга k-го порядка интервал времени между сообщениями представляет собой сумму k независимых случайных интервалов распределенных по показательному закону. Поэтому сведение потока Эрланга k-го порядка к Пуассоновскому осуществляется введением k псевдосостояний. Интенсивности перехода между псевдосостояниями равны соответствующему параметру потока Эрланга.

Полученная таким образом эквивалентный случайный процесс является марковским, т.к. интервалы времени нахождения его в различных состояниях подчинены показательному закону распределения.

 

Пример.

Некоторое устройство S выходит из строя с интенсивностью l, причем поток отказов Пуассоновский. После отказа устройство восстанавливается. Время восстановления распределено по закону Эрланга 3-го порядка с функцией плотности . Найти предельные вероятности возможных состояний системы.

Система S может принимать два состояния:

S0 – устройство исправно

l
S1 – устройство отказало и восстанавливается


S0
m
S0 à S1 – Пуассоновский поток

S1
S1 à S0 – поток Эрланга

 

Представим случайное время восстановления в виде суммы 3х интервалов, распределенных по показательному закону с интенсивностью m:

S1 заменяем эквивалентной цепочкой из трех псевдосостояний.

 

S13
l
m
m
m
S12
S11
S0

 

Последние 2 уравнения являются условием нормировки и условием эквивалентности замены состояния S1 псевдосостояниями.

 

Метод вложенных цепей Маркова.

Вложенные марковские цепи образуются следующим образом: в исходном случайном процессе выбираются такие моменты времени tk, в которых значения характеристик процесса образует марковскую цепь. Моменты времени tk обычно являются случайными и зависят от свойств самого процесса. Исходный процесс исследуется в выбранные моменты времени с помощью стандартных методов теории массового обслуживания.

Частным случаем вложенных цепей Маркова, являются полумарковские случайные процессы. Случайный процесс с конечным или счетным множеством состояний называется полумарковским, если заданны вероятности перехода системы из одного состояния в другое и распределение времени пребывания процесса в каждом состоянии (в виде функции распределения F(t) или в виде плотности распределения f(t))





Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: