Черные дыры в свете классических законов Ньютона

Считается, что существование таких космических объектов как черные дыры, было впервые обосновано А.Эйнштейном. Общая теория относительности предсказала возможность неограниченного гравитационного сжатия массивных космических тел до состояния коллапса, после чего эти тела можно обнаружить только их тяготению.
На самом деле о черных дырах заговорили намного раньше появления теории относительности.

А было это во времена И. Ньютона, который, как всем известно, открыл закон всемирного тяготения. Согласно этому закону - все подчиняется гравитации, даже луч света отклоняется в поле притяжения массивных тел. Собственно, с осознания этого факта и начинается история черных дыр в научном мире.

Началась она с работы английского священника и геолога Джона Мичелла, который в своей статье пришел к выводу о возможности существования черных дыр на основе рассуждений о поведении пушечного ядра в зависимости от его скорости. В результате он пришел к заключению, что может существовать очень маленькая, но очень тяжелая звезда, и чтобы «скорость ее убегания» была больше скорости света; тогда свет с ее поверхности не дойдет до наблюдателя, а обнаружить ее можно будет лишь по силе ее притяжения. На первый взгляд, ход рассуждений не блещет железной логикой, но, возможно, это как раз такой случай, когда интуитивное прозрение пытаются облечь в ткань логики, которая в этот раз была достаточно дырява из-за недостатка научных знаний.

Знаменитый француз Пьер Лаплас в 1795 году в своей книге «Изложение системы мира» написал:

«Светящаяся звезда с плотностью, равной плотности Земли и диаметром в 250 раз больше диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми»[1]. Свое гениальное утверждение Лаплас никак не доказывал, он просто это знал. Однако научный мир не воспринимает серьезно такие фундаментальные вещи без расчетов, формул и прочих доказательств. Лапласу пришлось потрудиться, и через несколько лет он дал своему предвидению научное обоснование, сделанное на все том же классическом законе Ньютона о всемирном тяготении. Эти доказательства также нельзя считать строгими, так как мы уже знаем, что законы Ньютона не совсем соответствуют действительности в масштабах Вселенной и квантовой механики. Но, в те времена, самой продвинутой была именно теория Ньютона, лучшего наука ничего не могла предложить, и поэтому ученым приходилось искать истину там, где был свет – под фонарем классических законов механики.

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: