Математическая модель взаимодействия пузырьков

 

В пятом приближении относительно  уравнения динамики двух газовых пузырьков в вязкой сжимаемой жидкости представляют собой систему, состоящую из четырех дифференциальных уравнений относительно радиусов пузырьков , координат их центров

;

;

;

;

Методика решения

 

Имея четыре уравнения второго порядка относительно радиуса и положения центра пузырьков. Вводим замену, чтобы избавится от второго порядка, и запишем уравнения 1 ого порядка:

Получаем систему 8-и уравнений 1-го порядка относительно радиуса, положения центра пузырьков, скорость изменения радиусов и положения центра пузырьков.

;

( )/ ;

/ ;

/ ;

/ ;

/ ;

/ ;

;

( )/ ;

()/ ;

()/ ;

/ ;

/ ;

()/ ;

;

/ ;

0;

()/ ;

()/ ;

/ ;

()/ ;

;

/ ;

0;

()/ ;

()/ ;

/ ;

()/ ;

Отсюда получаем данные уравнения в следующем виде:

Решим уравнение методом последовательных приближений.

В нулевом приближении данные уравнения записываются относительно радиуса и положения центра пузырьков.

Подставляя выражения, находим уравнения нулевого приближения:

В первом приближении уравнения записываются относительно радиуса, положения центра пузырьков, скорость изменения радиусов и положения центра пузырьков. Полученное первое приближение добавляем к нулевому приближению. И так находим до пятого приближения.

Исходя из этого, можем записать следующую систему:

Полученные дифференциальные уравнения решаются методом Дортсмана–Принса восьмой степени точности. (Программа приведена ниже).

 




double arrow
Сейчас читают про: