Работа САР температуры, обеспечивающая работу СЭУ

Работа пропульсивной судовой дизельной установки обеспечивается замкнутой системой охлаждения пресной водой и разомкнутой системой охлаждения забортной водой. Существует много вариантов построения автоматических систем регулирования и управления охлаждением дизельных энергетических установок. Разнообразие вариантов объясняется различием производственных возможностей заводов-строителей и требований заказчика. Управление осуществляется при помощи замкнутых автоматических систем, защиты, блокировок, сигнализации, дистанционных цепей управления и других средств автоматизации.

Системы автоматического регулирования температуры охлаждающей воды, топлива и масла идентичны друг другу. Температура среды регулируется перепуском помимо охладителя. С этой целью перед охладителем устанавливают трёхходовые или дроссельные клапаны, а датчики регуляторов помещают в регулируемую среду на входе или на выходе из охладителя. Температура забортной воды тоже регулируется, т.к. она может изменяться в течение суток.

Эксплуатационные и экономические показатели работы дизеля в большой степени зависят от выбора температуры охлаждающей воды. В тоже время режим охлаждения в дизеле является определяющим фактором температурного режима смазывания. Температурный режим в системе охлаждения определяется тем влиянием, которое оказывает температура на эксплуатационные показатели дизеля. Изменение температуры охлаждающей воды при всех прочих равных условиях вызывает изменение количества теплоты, передаваемой рабочими цилиндрами охлаждающей среде. Чем выше температура охлаждающей среды, тем меньше теряется теплоты. Часть теплоты, сохранённой таким образом, позволяет повысить полезную работу. Однако, повышение температуры охлаждающей воды приводит к уменьшению коэффициента наполнения цилиндров дизеля, что приводит к понижению его индикаторной мощности. С увеличением температуры охлаждения до определённых пределов уменьшаются потери на трение и изнашивание деталей механизма движения. Режим охлаждения влияет на лакообразование, нагарообразование и окисление масла. Правильный выбор режима охлаждения и поддержание его в условиях эксплуатации уменьшают коррозионное и эрозионное поражение охлаждаемых поверхностей дизеля. При применении высокосернистых топлив важным является вопрос выбора и поддержания соответствующего температурного режима в целях уменьшения изнашивания деталей цилиндропоршневой группы под влиянием серы.

С точки зрения сохранения температуры поверхностей охлаждения в допустимых пределах, обеспечения минимальных потерь теплоты с охлаждающей водой, уменьшения тепловых напряжений в охлаждаемых деталях двигателя, интенсивности кавитационной эрозии и электрохимической коррозии, а также предотвращения изнашивания деталей цилиндропоршневой группы при применении высокосернистого топлива оптимальным считается режим температур 70¸90°С для замкнутых систем охлаждения.

Говоря о системах охлаждения двигателей как объектах автоматического управления, сам двигатель рассматривают как теплообменное устройство. Для обеспечения стабильной средней температуры охлаждающей воды по высоте цилиндра рекомендуется поддерживать в заданных пределах температуру воды на выходе из двигателя.

Систему охлаждения современного автоматизированного судна выполняют по двухконтурной замкнутой схеме с отдельными циркуляционными насосами в каждом контуре и общей расширительной цистерной. Но до сих пор применяются на мощных тихоходных судовых дизелях одноконтурные схемы охлаждения для цилиндров, поршней и форсунок.

При перепуске регулирующий орган распределяет выходящий из двигателя поток горячей воды частично на водоводяной охладитель (теплообменник, охлаждаемый забортной водой) при замкнутых системах охлаждения, или на слив при разомкнутых системах охлаждения, а частично на перепуск обратно к двигателю. Температура воды, входящей в двигатель, будет определяться соотношением потоков, идущих через охладитель и перепуск. Количество воды, прокачиваемой через двигатель не изменяется.

Процесс отвода тепла осуществляется последовательно через два теплообменных устройства: от газов через стенку цилиндровой втулки к пресной воде (первый теплообменник) и от пресной воды через теплообменник (холодильник) - к забортной воде. Забортная вода прокачивается через холодильник насосом забортной воды. Температурное состояние стенки цилиндра определяется температурой воды на выходе из двигателя Q2, поэтому эта температура принимается в качестве регулируемого параметра.

Сторону подвода объекта регулирования представляет тепловой поток, поступающий от рабочего тела (газа) через цилиндровую втулку к воде, циркулирующей в зарубашечном пространстве. Количество тепла, передаваемого воде в единицу времени через стенку цилиндровой втулки, можно выразить так:


qподв = qдв = Kдв * Fдв * DQср, [14],

 

где Kдв - коэффициент теплопередачи от газов к воде;

Fдв - площадь теплообмена цилиндров двигателя;

DQср - средний температурный напор.

В соответствии с теорией теплопередачи[16] средний температурный напор DQср может определяться как средняя логарифмическая либо как средняя арифметическая разность при различных комбинациях суммирования граничных температур, включая и регулируемый параметр - температуру охлаждающей воды на выходе.

С целью предварительной оценки физической сущности свойств объекта будем полагать, что коэффициент теплопередачи Кдв является постоянной величиной, имеющей определённое значение для каждой нагрузки двигателя, а средний температурный напор упрощённо представим так:

 

DQср = Qг - Q2, [14],

 

гдеQг - температура газов;

Q2 - температура воды на выходе из двигателя.

Сторона отвода объекта оценивается количеством тепла, которое воспринимается охлаждающей водой и выражается уравнением [14]:

 

qотв = c*G*(Q2-Q1),

 

где с - удельная теплоёмкость воды;

G - расход охлаждающей воды через зарубашечное пространство;

Q1 - температура охлаждающей воды на входе в зарубашечное пространство;

Q2 - температура воды на выходе из двигателя.

Если предположить, что температура охлаждающей воды на входе Q1 постоянна и постоянно количество циркулирующей воды G, то получим одну характеристику отвода, описываемую линейным уравнением [14]:

 

qотв = m * t^2 - d,

 

где m = c * G;

 

d = c * G * Q1.

 

Такая характеристика отвода показана на рисунке 4.1. жирной линией.

 




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: