Измерение концентрации растворов

Концентрацией раствора называют содержание вещества в единице объема воды, выраженное в процентах или в единицах массы (мг/л). В производственных условиях для непрерывного контроля концентрации растворов применяют специальные приборы, которые в зависимости от назначения и группы измеря­емых веществ делятся на солемеры (определяют концентрацию растворов солей) и концентратомеры (определяют концентрацию растворов кислот и щелочей).

Солемеры применяют в паросиловых установках для непрерыв­ного контроля за солесодержанием насыщенного пара. Насыщен­ный пар в пароперегревателе полностью испаряется, при этом соли, содержащиеся в котловой воде, осаждаются на трубках пароперег­ревателя и вызывают их перегорание. Некоторую часть солей пар уносит в паровую турбину, засоряя ими клапаны турбины и лопатки. Все это вызывает необходимость непрерывно контролировать солесодержание пара.

Принцип действия солемера (рис. 10.20) основан на изменении электропроводности конденсата в зависимости от концентрации соли.

Пар через пароотборное устройство 11 поступает в дега­зационный холодильник 8.На входе в холодильник установлен патрубок 7 с большим числом мелких отверстий внутри (паровое сито), служащий, для очистки пара от случайных механических примесей и обеспечивающий равномерное распределение его по всему сечению холодильника. Контроль за состоянием парового сита осуществляют по манометру 10. Увеличение разности между давлением пара в котле и холодильнике сигнализирует о загрязнении сита.

Холодильник соединен с пароотборным устройством стальной трубкой 14 х 2 мм. Длина трубки при измерении солесодержания насыщенного пара 8... 10 м, перегретого пара 14... 16 м. Холодильник расположен ниже пароотборного устройства, а трубка, подводящая пар, соответственно на­клонена, что обеспечивает скопление всего конден­сата, образовавшегося в холодильнике, в ниж­ней его части, откуда он через конденсаторное сито и дроссель 6с проход­ным отверстием диамет­ром 0,5 мм попадает в расширитель 2, сообща­ющийся с атмосферой. На крышке холодильника ус­тановлен дроссель 9 для удаления скопляющихся в холодильнике газов. Вмес­те с газом выходит неболь­шое количество пара, что предотвращает чрезмер­ное накопление газов в холодильнике и ограни­чивает их растворение в конденсате.

При выходе из холо­дильника в расширитель температура конденсата снижается до 100°С. Из расширителя конденсат поступает в преобразователь 3, а пар, образующийся в расширителе и попадающий в него из холодильника, выходит в атмосферу через отверстие в верхней части расширителя. Конденсат заполняет в преобразователе кольцевое пространство между двумя ци­линдрическими электродами, пар отделяется сепаратором и через трубку выводится в атмосферу, а конденсат — в сливной бачок 5, откуда удаляется через сливную линию. Бачок создает подпор, обеспечивающий заполнение междуэлектродного пространства конденсатом. Преобразователь снаружи закрыт теплоизолирующим экраном и включен проводами, присоединенными к зажимам 4, в одном из плеч вторичного прибора электронного уравновешенного моста 1.

Электрическое сопротивление преобразователя находится в определенной зависимости от концентрации солей в конденсате пара. При его изменении нарушается равновесие и появляется напряжение в диагонали моста, которое усиливается электронным усилителем до значения, достаточного для приведения в действие

Рис. 10.20. Солемер: 1 - уравновешенный мост; 2 - расширитель; 3 -преобразователь; 4 - зажимы; 5 - сливной бачок; 6, 9 - дроссели; 7 - патрубок; 8 - дегазационный холодильник; 10 - манометр; 11 - пароотборное устройство

 

реверсивного электродвигателя. Электродвигатель, вращаясь, пере­мещает движок реохорда до наступления нового равновесия, после чего электродвигатель останавливается. С движком реохорда связа­на печатающая каретка с указателем. Так как каждому сопротивлению преобразователя соответствует определенное поло­жение движка реохорда, при котором мост уравновешен, то поло­жение указателя покажет содержание соли.

Концентратомеры. Действие их основано на зависимости электрического сопротивления раствора от его концентрации. Рас­смотрим схему установки для измерения концентрации серной кислоты (рис. 10.21). Из кислотопровода 7 серная кислота проходит по соединительной трубе 4 через вентиль 2 и фильтр 3 в преобра­зователь 5. Внутри чугунного корпуса преобразователя установлен открытый снизу стакан 6 с рядом отверстий. Вверху стакана находится перегородка, в ней закреплены два измерительных элек­трода 7 и сравнительный электрод 8У устраняющий влияние темпе­ратуры раствора на показания прибора. Электрод 8 заполнен кислотой постоянной известной концентрации.

Измерительные и сравнительные электроды медными про­водниками соединены с электрическими зажимами, расположен­ными на стакане. Для улучшения контакта измерительных электродов с медными проводниками контактные трубки этих электродов заливают ртутью.

Кислота из преобразователя сливается через воронку 12 в кислотосборник (на рисунке не показан). Преобразователь соединен тремя проводами с измерительным устройством 9. При изменении концентрации раствора меняется его электрическое сопротивление. Это приводит к увеличению или уменьшению разности потенциалов между измерительными электродами, вследствие чего на измерительное устройство поступает соответствующий сигнал, ко­торый затем передается на показывающий 10 и самопишущий 11 милливольтметры. Шкалы этих приборов пересчитаны в единицах концентрации раствора (мг/л).

 

Рис. 10.21. Схема установки для измерения концентрации серной кислоты: 1 - кислотопровод; 2 - вентиль; 3 - фильтр; 4 - соединительная труба; 5 - преобра­зователь; 6 - стакан; 7 - измерительные электроды; 8 - сравнительный электрод; 9 -измерительное устройство; 10. 11 - милливольтметры; 12 - воронка

 

 

Приборы для измерения концентрации водородных ионов в рас­творах (рН-метры). На предприятиях химической, нефтехимичес­кой, нефтеперерабатывающей, текстильной (при крашении тканей) и других отраслей промышленности кислотность или щелочность растворов в значительной степени влияет на ход технологического процесса и качество получаемой продукции. Кислотность и щелочность растворов определяются кон­центрацией в них водородных ионов. Для удобства измерения концент­рацию водородных ионов харак­теризуют условным числом и обозначают символом рН. Значение рН чистой воды и нейтральных рас­творов равно 7. Раствор, рН которого более 7, является щелочным, менее 7—кислым. Приборы для изме­рения рН называют рН-метрами, в основу которых положен электри­ческий способ измерения. При пог­ружении в раствор электродов из определенных материалов на границе между электродом и раство­ром возникает электрический по­тенциал, зависящий от температуры и концентрации водородных ионов в растворе. Подобное же явление на­блюдается на границе соприкосно­вения двух разнородных или однородных, но с разной концент­рацией жидкостей, разделенных полупроницаемой перегородкой.

Число рН определяют путем измерения разности потенциалов между двумя электродами, из кото­рых один (измерительный) погружен в исследуемый раствор, а другой (сравнительный) — в раствор с известным числом рН.

В качестве измерительного применяют стеклянный электрод (рис. 10.22, а) —толстостенную стеклянную трубку 2 с тонкостенным стеклянным шариком 1 на конце.

Шарик заполнен раствором бромистоводородной кислоты. В трубку вставлен вспомогательный электрод (серебряная проволока, покрытая слоем бромистого се­ребра) для снятия потенциала с внутренней поверхности шарика.

В качестве сравнительного применяют насыщенный каломель­ный электрод (рис. 10.22, б), который состоит из двух стеклянных трубок, вставленных одна в другую. Во внутренней трубке помещена перегородка с проходящей через нее платиновой (или серебряной) проволочкой. Под перегородкой находится химически чистая ртуть 4 и слой 5пасты из каломели (хлористой ртути), которые удержива­ются ватным тампоном 6. Нижняя часть внутренней трубки запол­нена раствором определенной концентрации и закрыта пробкой 7. Внешняя трубка заполнена тем же раствором и в дно ее впаян асбестовый фитилек для контакта с исследуемым раствором.

 

 

Рис.10.22. Электроды преобразователя pH-метра: а – измерительный электрод; б – сравнительный электрод; 1 – шарик; 2 – трубка; 3 – перегородка; 4 – ртуть; 5 – слой каломельной пасты; 6 – ватный тампон; 7 - пробка

 

При промышленном применении рН-метров два рассмотренных выше электрода помещают в специальный сосуд, через который непрерывно протекает испытываемый раствор. Такое устройство носит название преобразователя рН-метра.

Концентрацию водородных ионов раствора, протекающего в трубопроводе под давлением, определяют с помощью погружных преобразователей, имеющих оба электрода специальной конст­рукции, защищенные от механических повреждений и погружаемые непосредственно в трубопровод.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: