Солнечный цикл и орбита Земли

Интенсивность солнечной радиации меняется, хотя и в относительно небольших пределах. Прямые измерения интенсивности солнечного излучения имеются только за последние 25 лет, но есть косвенные параметры, в частности активность солнечных пятен, что давно используется для оценки интенсивности солнечной радиации. Кроме изменения потока от Солнца, Земля получает разное количество энергии в зависимости от положения ее эллиптической орбиты, которая испытывает колебания. В течение последнего миллиона лет ледниковые и межледниковые периоды менялись в зависимости от положения орбиты нашей планеты. Меньшие колебания орбиты наблюдались в последние 10 тысяч лет и климат стал относительно стабильным. Однако в любом случае колебания орбиты ‑ явление достаточно инерционное, оно принципиально важно в тысячелетнем масштабе времени, в то время как антропогенное воздействие на климат имеет гораздо более короткий временной масштаб.

Так же поиски ответа на вопрос о причинах глобального потепления усложнены из-за потенциальной третьей причины: возможного увеличения яркости Солнца.

П. Фоукл (Р. Foukal; корпорация "Heliophysics", США) и его коллеги проанализировали эволюцию связанных с яркостью Солнца параметров за последнюю 1000 лет, а также исследовали их связь с глобальной температурой Земли. Вариации яркости связаны с изменением количества солнечных пятен и ярких факелов. Солнечные пятна действуют как тепловые "пробки", перекрывающие выход энергии на солнечную поверхность, тогда как факелы ‑ это тепловые "пробои", позволяющие теплу из глубинных слоев вырываться наружу. Во времена повышенной солнечной активности увеличивается количество и солнечных пятен, и факелов, но влияние факелов преобладает, приводя к общему повышению яркости.

Как именно солнечные пятна и факелы влияют на светимость Солнца? Чтобы понять это, Фоукл и его коллеги использовали как прямые наблюдения нашей звезды в период с 1978г., так и косвенные предыдущие измерения. Данные, полученные на радиометрах американо-европейского спутника "SOHO", показали, что в годы солнечного максимума (например, около 2000 г.) Солнце было ярче всего на 0.07%, чем в минимуме активности[13]. Авторы утверждают, что столь небольшие колебания яркости слишком малы, чтобы внести существенный вклад в глобальное потепление. Кроме того, рост средней температуры особенно ускорился с середины 1970-х годов, хотя никаких признаков увеличения солнечной яркости в этот период не найдено.

Чтобы охватить период до 1978г., авторы использовали исторические записи о количестве солнечных пятен и исследовали радиоактивные изотопы, которые рождаются в земной атмосфере под воздействием космических лучей и сохраняются в ледяных пластах Гренландии и Антарктиды. В периоды высокой солнечной активности мощный солнечный ветер защищает Землю от космических лучей, в результате чего содержание изотопов в соответствующих слоях льда снижается.

Для того чтобы выявить возможное влияние долговременных изменений яркости, авторы использовали семь различных реконструкций температуры в Северном полушарии за последнее тысячелетие. Затем они оценили, как сильно могли повлиять на климат изменения солнечной светимости, связанные с солнечными пятнами и факелами. Оказалось, что некоторое увеличение яркости Солнца за последние 400 лет действительно произошло, но оно, по мнению авторов, может объяснить лишь небольшую часть глобального потепления за этот период.

Фоукл и его коллеги считают, что, помимо яркости Солнца в видимом диапазоне, нельзя исключить влияние на климат солнечного ультрафиолетового излучения или космических лучей. Однако физические модели этих эффектов пока недостаточно разработаны, чтобы можно было учесть их хотя бы приблизительно.

Вулканические извержения

В результате извержений в атмосферу выбрасываются значительные объемы взвешенных частиц ‑ аэрозолей, они разносятся тропосферными и стратосферными ветрами и не пропускают часть приходящей солнечной радиации. Однако эти изменения не являются долгосрочными, частицы относительно быстро оседают.

Например, извержение вулкана Тамбора в Индонезии в 1815 г. снизило среднюю глобальную температуру на З 0С. В последующий год и в Европе и в Северной Америке лета "не было", но за несколько лет все исправилось. Заметим, что важна не сила извержения и не количество выброшенного пепла, а то, сколько его было заброшено на большую высоту, на 10 и более км, так как именно это определяет радиационный эффект от извержения.

Помимо изменений в температурном режиме вулканические выбросы уничтожают также стратосферный озон. Например, следствие извержения в Мексике в 1982 г. вулкана Эль-Чичон в последующие три-четыре года было уничтожено порядка 10% озона. В 1991 г. извержение вулкана Пинатубо на Филиппинах вызвало уменьшение озона на 15% в течение нескольких лет, и считается, что оно явилось причиной увеличения размера озоновой дыры над Антарктикой[14].

Антропогенные причины

Экологический след человечества, отражающий антропогенное давление на биосферу, в настоящее время превышает способность планеты к восстановлению примерно на 30%.[15] "Этот глобальный перерасход продолжает увеличиваться, приводя к разрушению экосистем, а также накоплению отходов и загрязняющих веществ в воздухе, в воде и на суше. Результаты перерасхода ‑ исчезновение лесов, дефицит воды, снижение биоразнообразия и изменение климата ‑ представляют все большую угрозу для благосостояния и развития всех стран".

К антропогенным причинам относится, прежде всего, повышение концентрации в атмосфере парниковых газов, в основном СО2, образующегося при сжигании ископаемого топлива. Другие причины ‑ выброс аэрозольных частиц, сведение лесов, урбанизация и т.п.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: