Методические рекомендации по подготовке к ЕГЭ по физике. 2002г

Изучение физики на базовом уровне в старшей школе направлено на достижение следующих целей:освоение системы знаний о современной физической картине мира, в основе которой лежат фундаментальные законы и принципы; ознакомление с наиболее важными открытиями в области физики, историей развития и становления физических идей; углубление представлений о физических методах познания природы для приобретения умений применять их в практической жизни, устанавливать достоверность фактов путем наблюдений, измерений и обработки полученных данных, выдвигать гипотезы и строить модели, объясняющие причины наблюдаемого явления; проверять гипотезы в эксперименте; овладение умениями применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний в повседневной жизни; понимания роли и значения физики в развитии современных технологий, решении проблем энергетики, защиты окружающей среды; развитие познавательных интересов, интеллектуальных и творческих способностей в процессе: самостоятельного приобретения новых знаний по физике в соответствии с жизненными потребностями; использования современных информационных технологий для поиска ит переработки учебной и научно-популярной информации физического содержания; воспитание убежденности в познаваемости законов окружающего мира и возможности использования достижений физики на благо развития человеческой цивилизации; воспитание духа сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания, стремления к достоверности предъявляемой информации и обоснованности высказываемой позиции, готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды; приобретение компетентности в использовании физических знаний и умений при решении жизненных проблем и практических задач, связанных со сбережением энергетических ресурсов, рациональным природоиспользованием, обеспечением безопасности жизнедеятельности человека и общества.

Реализация указанных целей и формирование названной компетентности достигается в результате освоения содержания физического образования, элементы которого перечислены в «Кодификаторе элементов содержания по физике для составления контрольно-измерительных материалов (КИМ) единого государственного экзамена», приведенном в сборнике (10, с.134-139). Задания КИМ составляются на данные элементы физических знаний.

Виды деятельности, освоенные учеником в школе, которые могут проверяться в заданиях ЕГЭ, перечислены в «Требованиях к уровню подготовки по физике выпускника средней школы» (12, с. 10-21).В рамках КИМ ЕГЭ 2002г. контролировались следующие виды деятельности:

1. Приводить примеры опытов, обосновывающих научные представления и законы, или примеры опытов, позволяющих проверить законы и их следствия.

2. Объяснять физические явления.

3. Делать выводы на основе экспериментальных данных, представленных таблицей, графиком, диаграммой, схемой и п.т. Проводить расчеты с использованием этих данных.

4. Применять законы физики для анализа процессов на качественном уровне.

5. Применять законы физики для анализа процессов на расчетном уровне.

6. Описывать преобразования энергии в физических явлениях и технических устройствах.

7. Иллюстрировать роль физики в создании и совершенствовании технических объектов.

8. Владеть понятиями и представлениями физики, связанными с жизнедеятельностью человека.

9. Указывать границы (область, условия) применимости научных моделей, законов, теорий.

10. Выдвигать гипотезы о связи физических величин.

Рассмотрим соотношение заданий в варианте ЕГЭ по разделам физики:

задания по механике составляют 34 %;
по МКТ и термодинамике – 28 %;
по электродинамике и оптике – 28 %;
по квантовой физике – 10 %.
Из них: 10 % заданий проверяют умения методологического характера;
12 % – умение анализировать график;
18 % – проводить расчеты по графикам;
4 % – строить изображения предмета в линзе и зеркале;
12 % – описывать и объяснять физические явления;
40 % – прменять физические законы для анализа процессов и рассчитывать их результаты;
2 % – описывать преобразования энергии в технических устройствах;
2 % заданий проверяют знание экологических проблем, связанных с техническими применениями достижений физики.

Учителю необходимо готовить учащихся к ЕГЭ согласно тематическим блокам, представленным в пособии (10, с.17–81), обращая внимание на проверяемые виды деятельности в тесте (10, с.104–107).

Задание по одной и той же теме в тесте может быть представлено не только в словесной форме, но и с помощью графика, таблицы, схемы. Задание может быть качественное или расчетное. Особое внимание учителю следует уделить проверке усвоения школьниками методов научного познания, владению понятиями физики, связанными с жизнедеятельностью человека, пониманию роли физики в создании и совершенствовании современной техники.

Приведем пример статистики верных ответов участников ЕГЭ 2002г.
наибольший процент верных ответов по теме «Кинематика» – 62,72 %;
наименьший процент верных ответов – по темам «Магнитное поле. Электромагнитная индукция. Электромагнитные колебания. Идеи теории Максвелла» – 34,89 %; «Методы наблюдения и регистрации частиц в ядерной физике. Радиоактивность. Нуклонная модель ядра. Ядерные реакции. Элементарные частицы» – 34,38 %

В. А. Орлов (9) выделяет элементы знаний в заданиях ЕГЭ 2002г., которые вызвали затруднения у учащихся, например, такие как:

сонаправленность векторов силы и ускорения;

· понимание того, что ускорение вызывается силой;

· понимание векторного характера импульса и его изменения;

· умение применять закон сохранения энергии;

· понимание, что при неупругом столкновении закон сохранения механической энергии не выполняется и в этих случаях нужно применять закон сохранения импульса;

· умение выделять физические явления, лежащие в основе процесса, описанного в задании;

· умение понимать тексты с физическим содержанием и отвечать на вопросы по этим текстам, выделяя физические явления, лежащие в основе описанных процессов;

· понимание свойств насыщенного пара;

· понимание смысла КПД тепловой машины;

· понимание физического смысла понятий напряженности электрического поля, электроемкости;

· понимание смысла явления электромагнитной индукции;

· понимание идей Максвелла об излучении электромагнитных волн;

· знание границ применимости законов физики и др.

Учителю следует обратить внимание на традиционный задачник А. П. Рымкевича по физике в средней школе (Физика.Задачник.10–11кл.:Пособие для общеобразоват.учеб.заведений.– 5-е изд., перераб. М.:Дрофа, 2001. 192с.), в котором представлены не все виды деятельности, проверяемые тестами ЕГЭ.Например, задания на построение графиков, их анализ и расчет по графикам в тесте составляют 34% от всех заданий, а в задачнике аналогичные задания – 2,5% от всех задач; задания на умения воспроизводить и перерабатывать информацию в различных формах (графики, рисунки, таблицы, схемы, диаграммы) в тесте составляют примерно 50%, а в задачнике – 9,2%.

Тестовые задания отражают тенденции нового стандарта физического образования, соответствуют роли физики в системе общего образования школьников.

Рекомендуемая литература

Баканина Л. П. Сборник задач по физике: Учеб.пособие для угл. изуч. физики в 10–11-х кл. М.: Просвещение, 1999.

1. Единый государственный экзамен 2001: Тестовые задания: Физика / Е. К. Страут; И. И. Нурминский, Н. К. Гладышева и др.; М-во образования РФ. М.: Просвещение, 2001. 80 с.

2. Единый государственный экзамен. // Физика в школе, 2002. № 1.

3. Гельфгат И. М., Генденштейн Л. Э., Кирик Л. А. 1001 задача по физике с решениями. Х-М., 1998.

4. Гринченко Б. И. Как решать задачи по физике. Санкт-Петербург, 2000.

5. Кабардин О. Ф., Кабардина С. И., Орлов В. А. Контрольные и проверочные работы по физике. 7–11 кл.: Метод.пособие. М.: Дрофа, 1998. 192с.

6. Конкурс «Контрольно-измерительные материалы для единого государственного экзамена» // Физика, 2002. № 34.

7. Образец варианта единого государственного экзамена по физике 2002 г. // Физика, 2002. № 35.

8. Орлов В.А. Содержательный анализ результатов выполнения заданий ЕГЭ по физике 2002г. // Физика, 2002, № 37.

9. Орлов В. А., Ханнанов Н. К. Учебно-тренировочные материалы для полготовки к единому государственному экзамену. Физика. М.: Интеллект-Центр, 2002. 144с.

10. Оценка качества подготовки выпускников основной школы по физике / Сост. В. А. Коровин. М.: Дрофа, 2002. 64с.

11. Оценка качества подготовки выпускников средней (полной) школы по физике / Сост. В. А. Коровин, В. А. Орлов. М.: Дрофа, 2002. 192с.

12. Савченко Н. Е. Задачи по физике с анализом их решения. М.: Просвещение: Учеб. лит., 1996.

13. Сборник тестовых заданий для тематического и итогового контроля. Физика. 10 класс. М.: Интеллект-Центр, 2002.

14. Сборник тестовых заданий для тематического и итогового контроля. Физика 11 класс. М.: Интеллект-Центр, 2002.

15. Сборник задач по физике для 1011х классов общеобразовательных учреждений / Составитель Г. Н. Степанова. М.: Просвещение, 2000.

16. Сборник задач по физике для 1011х классов общеобразовательных учреждений. / Составитель А. Н. Малинин. М.: Просвещение, 2001.

17. Физика. Тесты 11класс. Варианты и ответы централизованного тестирования. М.: Центр тестирования МО РФ, 2001.

18. Интерактивные и демонстрационные тесты. www.Ege.ru/demoege.html Янюшкина Галина Михайловна, зав. кафедрой теоретической физики и МПФ, кандидат педагогических наук, доцент КГПУ.

 

 

2005-2006

Анализ выполнения КИМов учащимися различных групп показывает, что при переходе от группы с оценкой «2» к группе с оценкой «3», а затем к группе с оценкой «4» наблюдается простое повышение процента выполнения заданий. Повышение оценки в пределах от «2» до «4» связано с усвоением всё большего объёма материала школьного курса физики. Группа выпускников, получивших оценку «4», хотя бы на простейшем уровне усвоили практически все предусмотренные образовательным стандартом вопросы физики. Выпускники, получившие оценку «5», отличаются от выпускников с оценкой «4» главным образом умением применять знания по физике при выполнении сложных заданий и анализе новых ситуаций. Именно эта группа успешно выполнила большинство заданий частей В и С.

Анализ результатов выполнения заданий с выбором ответа показал, что с целым рядом из них плохо справились даже выпускники, получившие оценку «5». Среди трудных даже для отличников заданий оказались и простые задания на проверку элементов знаний, изучение которых предусмотрено образовательным стандартом (так называемые задания базового уровня). Ниже перечислены элементы содержания, проверяемые этими заданиями:

– относительность скорости (для случая взаимно перпендикулярных скоростей);

– равенство нулю работы равнодействующей силы при равномерном движении тела;

– определение преобладающего вида теплопередачи в различных процессах;

– измерение влажности воздуха психрометром (изменение влажности, влияющее на разность показаний сухого и влажного термометров при постоянной температуре);

– преобразование энергии при изменении агрегатного состояния вещества (в частности, уменьшение потенциальной энергии взаимодействия молекул при конденсации вещества);

– определение изменения кинетической энергии заряженной частицы при её перемещении в электростатическом поле;

– равенство нулю напряжённости электростатического поля внутри заряженного металлического проводника;

– изменение амплитуды силы тока при резонансе в колебательном контуре;

– объяснение опыта по электромагнитной индукции (падение металлического кольца на постоянный магнит);

– проявление в повседневной жизни оптических явлений (дифракция, дисперсия);

– определение скорости частицы по заданным соотношениям между полной энергией и энергией покоя частицы;

– условия наблюдения фотоэффекта;

– определение энергии поглощаемых или испускаемых атомом фотонов по заданной схеме энергетических уровней атома.

На эти вопросы следует обратить особое внимание при изучении соответствующих тем и организации обобщающего повторения.

Рекомендации по подготовке учащихся к ЕГЭ














Подготовка учащихся к ЕГЭ может быть организована в различных формах в зависимости от вида образовательного учреждения или профиля класса. Для классов, в которых физика является профильным предметом и подавляющее число учащихся собирается сдавать ЕГЭ по этому предмету, изучение программного материала желательно закончить к четвёртой четверти, а затем провести обобщающее повторение и подготовку к экзамену в рамках существующего учебного времени. Для учащихся, которые изучают физику в общеобразовательных классах и изъявили желание попробовать свои силы в ЕГЭ, подготовка к экзамену может быть организована в рамках специального элективного курса.

При планировании подготовки к экзаменам следует обратить внимание на рекомендации по объёму материала по каждой теме в КИМах 2006 г. и в соответствии с этим распределять отведённое время. Для каждой из тем целесообразно выделить следующие этапы:

– повторение теоретического материала и тренировка в выполнении тестовых заданий;

– самостоятельное выполнение теста из заданий с выбором ответа по каждой из выделенных подтем (в механике – это кинематика, динамика, элементы статики и т.п.);

– решение типичных задач (с учётом рекомендаций по оформлению ответов заданий частей В и С);

– тренировочная контрольная работа по решению задач;

– обобщающее повторение всей темы с разбором основных ошибок;

– самостоятельное выполнение тренировочного тематического теста в формате ЕГЭ. (Например, 24 задания, из которых 18–22 с выбором ответа, 1–2 с кратким ответом и 2–3 с развёрнутым ответом).

Важной частью подготовки к ЕГЭ является выработка каждым выпускником собственной тактики выполнения экзаменационной работы в соответствии с поставленными целями и реальным уровнем его подготовки. При проведении репетиционных экзаменов каждый выпускник должен провести собственный хронометраж выполнения отдельных частей работы. На основании времени, затрачиваемого на решение заданий различной сложности и поставленных целей, выпускнику необходимо определить оптимальный для себя порядок и временные ограничения на выполнение заданий различных частей работы.

При выполнении экзаменационной работы не рекомендуется, например, пренебрегать заданиями базового уровня в первой части и сразу переходить к решению сложных задач третьей части, поскольку вопросы с выбором ответа обеспечивает почти 60% успеха выполнения варианта. Не стоит забывать о том, что каждая задача С1–С6 оценивается в 3 первичных балла, и даже при неполном решении или допущенной ошибке есть возможность получить за задание 1–2 балла. Поэтому, если решение задачи не выполняется до конца в силу недостатка времени или возникших трудностей, его всё равно желательно записать в бланк ответа. Задачи В1–В4 подчас очень похожи (по сложности и темам) на задания повышенного уровня первой части А25–А30. Поэтому желательно помочь учащимся научиться при просмотровом чтении сравнивать эти задания и выбирать для выполнения оптимальные для своего уровня подготовки и лимита времени.

В первой части экзаменационной работы представлены задания с выбором ответа, которые проверяют как знание широкого спектра элементов содержания, так и овладение выпускниками практически всеми обобщёнными умениями, указанными в спецификации 2006 г. При подготовке учащихся к выполнению этих заданий следует обратить внимание на все содержательные особенности каждого элемента знаний.

Например, если определяется знание какого-либо физического закона, то задания могут быть направлены на проверку следующих способов деятельности:

· Узнавать словесную формулировку физического закона и его математическое выражение. Различать графическую интерпретацию зависимости величин, входящих в закон.

Пример 1* (* Здесь и далее жирным шрифтом выделены правильные ответы. – Ред.)

Сила взаимодействия двух неподвижных точечных зарядов:

1) прямо пропорциональна произведению их зарядов и квадрату расстояния между ними;

2) прямо пропорциональна произведению их зарядов и обратно пропорциональна квадрату расстояния между ними;

3) прямо пропорциональна произведению их зарядов и обратно пропорциональна расстоянию между ними;

4) прямо пропорциональна квадрату расстояния между ними и обратно пропорциональна произведению их зарядов.

Пример 2

На каком графике приведена зависимость модуля силы взаимодействия F двух точечных зарядов от расстояния r между ними?

· Выделять причинно-следственные связи между величинами, входящими в закон.

Пример 3

При увеличении напряжения между обкладками конденсатора в 2 раза электроёмкость конденсатора:

1) не изменится; 2) увеличится в 2 раза; 3) уменьшится в 2 раза; 4) уменьшится в 4 раза.

· Применять закон для анализа процессов на качественном уровне.

Пример 4

В инерциальной системе отсчёта движутся два тела. Первому телу массой m сила F сообщает ускорение a. Чему равна масса второго тела, если вдвое меньшая сила сообщила ему в 4 раза большее ускорение?

1) 2m; 2) m/8; 3) m/2; 4) m.

Пример 5

В закрытом сосуде абсолютная температура идеального газа уменьшилась в 3 раза. При этом давление газа на стенки сосуда:

1) увеличилось в 9 раз; 2) уменьшилось в раз; 3) уменьшилось в 3 раза; 4) не изменилось.

· Применять закон для анализа процессов на расчётном уровне.

Пример 6

Брусок массой M = 300 г соединён с бруском массой m = 200 г невесомой и нерастяжимой нитью, перекинутой через невесомый блок. Чему равно ускорение бруска массой 300 г? Трением пренебречь.

1) 2 м/с2; 2) 3 м/с2; 3) 4 м/с2; 4) 6 м/с2.

Пример 7

Работа выхода для материала пластины равна 2 эВ. Пластина освещается монохроматическим светом. Какова энергия фотонов падающего света, если максимальная кинетическая энергия фотоэлектронов равна 1,5 эВ?

1) 0,5 эВ; 2) 1,5 эВ; 3) 2 эВ; 4) 3,5 эВ.

Пример 8

Участок проводника длиной 20 см находится в магнитном поле индукцией 50 мТл. Сила электрического тока, протекающего по проводнику, равна 15 А. Какое перемещение совершит проводник в направлении действия силы Ампера, если работа этой силы равна 0,0015 Дж? Проводник расположен перпендикулярно линиям магнитной индукции.

1) 0,0001 м; 2) 0,01 м; 3) 0,5 м; 4) 5 м.

· Использовать знание границ применимости закона для анализа физических процессов.

Пример 9

Формулу нельзя применить для расчёта притяжения:

1) двух железнодорожных составов, стоящих на соседних путях; 2) двух биллиардных шаров, лежащих на столе; 3) Земли и Луны; 4) человека и Луны.

К сожалению, имеющиеся учебники и стандартные задачники по физике не предлагают необходимого спектра методических приёмов, необходимых для освоения всех умений, проверяемых в рамках тестовых заданий ЕГЭ. Поэтому при подготовке учащихся к выполнению теста необходимо проанализировать литературу, освещающую результаты экзаменов прошлых лет, и как можно шире использовать в процессе преподавания контрольные работы в формате ЕГЭ.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: