Найдём координаты неподвижных точек аффинного преобразования (2). Для неподвижных точек, то есть для точек, переходящих в себя при аффинном преобразовании, должно выполняться следующее условие: z’=z, то есть
. (7)
Выразим отсюда z. Для этого решим следующую систему
(где
) (8)
Получили координату точки, являющейся инвариантом аффинного преобразования с коэффициентами a, b, c.
Тогда для аффинного преобразования возможны три случая [1]:
1) неподвижных точек не существует;
2) неподвижная точка единственная;
3) неподвижных точек бесконечно много.
Рассмотрим каждый из этих случаев.
1. Неподвижных точек не существует тогда и только тогда, когда для коэффициентов преобразования выполняется условие:
Преобразовав второе условие системы, получим
. (9)
Выполнимость этой системы и является условием того, что для данного аффинного преобразования неподвижных точек не существует.
2. Неподвижная точка единственна тогда и только тогда, когда
, то есть
(10)
3. Неподвижных точек бесконечно много тогда и только тогда, когда выполняется условие
что равносильно системе
(11)
Возьмём условие неподвижности точки:
(12)
и рассмотрим два случая:
1) Пусть с≠0, тогда умножим (12) на с, получим:
. Воспользовавшись системой (11), получим равенство:
, (13)
где коэффициенты при z и
сопряжены, а свободный член является действительным числом, следовательно, равенство (13) при условии (11) задаёт прямую неподвижных точек.
2) Пусть теперь с=0, тогда (12) представится в виде
. Выразим отсюда z:
, откуда
Приравняем правые части и получим равенство
, что равносильно условию
. Поделим на z ≠0, в результате чего получим
. То есть условие (11) задаёт прямую неподвижных точек (12), которая называется осью аффинного преобразования. Если такая прямая есть, то аффинное преобразование называется родством.
Если а=1, то
- единственная неподвижная точка, и аффинное преобразование называется центроаффинным.
Если b=0 и c≠0, то аффинное преобразование является параллельным переносом.
Если b=0 и c=0, то аффинное преобразование является тождественным.






