Если на плоскости задана система координат, то одну из двух ориентаций плоских фигур называют обычно положительной, а другую – отрицательной. За положительную принимается ориентация, определяемая обходом координатного треугольника ОЕ1Е2 (рис. 1) или, что то же самое, направлением вращения от вектора
к вектору
(на угол, меньший 1800). В связи с этим введём также понятие ориентации пары векторов: будем называть пару векторов
и
ориентированной положительно, если направление вращения (на наименьший возможный угол) от
к
совпадает с направлением вращения от
к
; в противном случае пару векторов
и
назовём ориентированной отрицательно.

Рис. 1
Выясним теперь, как определить ориентацию пары векторов
и
, заданных своими комплексными координатами p и q соответственно. Очевидно, что если угол между векторами положительно ориентирован, то его синус положителен, в противном случае – отрицателен.
Используем формулу синуса угла между векторами, заданными своими комплексными координатами:
. Найдём синус угла между векторами
(p) и
(q):
. Здесь числитель – чисто мнимое число, следовательно, знак синуса угла зависит от знака числа
.
Образом вектора
(p) при аффинном преобразовании (2) будет вектор
с комплексной координатой
, вектор
, являющийся образом вектора
(q) при этом же аффинном преобразовании будет иметь комплексную координату
. Найдём теперь синус угла между векторами
и
:
. Упростив правую часть равенства, получим:
. Знак синуса угла между векторами
и
зависит от знаков выражений
и
так как второе из них присутствует в выражении
, то именно от выражения
зависит, будет ли знак синуса угла между векторами
и
отличаться от знак синуса угла между векторами
и
. То есть если значение выражения
положительно, то ориентация пары векторов
и
будет совпадать с ориентацией пары векторов
и
. В противном случае при аффинном преобразовании (2) ориентация пары векторов сменится на противоположную.
Таким образом, аффинное преобразование (2) сохраняет ориентацию пары векторов (и, соответственно, плоских фигур) в случае, когда его определитель
положителен. В этом случае преобразование (2) является аффинным преобразованием первого рода. Иначе, аффинное преобразование меняет ориентацию пары векторов (и, соответственно, плоских фигур) в случае, когда его определитель отрицателен. И в таком случае преобразование (2) является аффинным преобразованием второго рода.






