Сжатие и его частные виды

Найдём собственные числа λ преобразования сжатия (24) из условия . Составим систему из этого условия и сопряжённого к нему выражения: . Чтобы найти собственные числа, нужно решить уравнение , откуда получим  и .

Примем без доказательства следующую теорему [1]: если λ – собственное действительное число аффинного преобразования, то множество точек, каждая из которых делит в отношении  отрезок, соединяющий точку с её прообразом, есть двойная прямая этого преобразования.

 

 


                                             Рис. 3

 

Очевидно, что прямые MM’  и NN’ (рис. 3) являются двойными прямыми и λ2 – действительное число, то точка Р делит отрезок MM’ в отношении , то есть . Число = δ называется коэффициентом сжатия. Если а – действительное число, то направление сжатия перпендикулярно его оси и сжатие называется прямым (ортогональным) сжатием.

Рассмотрим частный случай сжатия – косую симметрию [1]. Это инволютивное преобразование, то есть оно тождественно преобразованию, обратному ему. Преобразование, обратное (24), имеет формулу:

                                                   (25)

Оно имеет ту же ось, что и (24). Равенство преобразований (24) и (25) имеет место тогда и только тогда, когда , откуда , то есть а – чисто мнимое число. Таким образом, формулой (24) при условии  задаётся косая симметрия с действительной осью. В этом случае коэффициент сжатия равен , следовательно, ось косой симметрии делит пополам каждый отрезок, соединяющий соответственные точки. Косая симметрия – аффинное преобразование второго рода, так как его определитель отрицателен.

Если а=0, получаем осевую симметрию относительно действительной оси. Осевая симметрия – аффинное преобразование также второго рода ().

 


Сдвиг

Выясним, как перемещается по плоскости точка при сдвиге (рис.4). Рассмотрим равенство (22), возьмём модули обеих частей этого равенства

                                                         (26)

и посмотрим, чем является каждый модуль в (26).

 

 

 

 

 


                                            Рис. 4

 

 - это расстояние от точки М(z) до её образа M’(z’) при аффинном преобразовании.  - это модуль постоянного вектора, перпендикулярного направлению сдвига, а  - это расстояние от М(z) до точки с координатой, сопряжённой z, равное удвоенному расстоянию от точки M(z) до действительной оси Ох.

Преобразуем правую часть (26):  ,                                   (27) тогда из (22) и (27) следует, что при сдвиге каждая точка M(z) смещается параллельно его оси на расстояние , пропорциональное расстоянию  от этой точки до действительной оси. Коэффициент пропорциональности этих расстояний  называется коэффициентом сдвига.

Найдём собственные числа преобразования сдвига из уравнения, составленного аналогично тому, как составляли для сжатия: , откуда найдём . Значит, преобразование сдвига имеет только один инвариантный пучок параллельных прямых, параллельных оси сдвига.

Определитель преобразования сдвига  строго больше нуля, поэтому сдвиг – аффинное преобразование первого рода.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: