Импульсная аппроксимация

 

Комптон-эффект исследовался многими учеными в практическом и теоретическом плане. КЭ занимались Дю-Монд, Купер, Вейс, Филипс. В их работах было рассмотрено рассеяние на не покоящихся электронах.

Рассеяние монохроматического излучения на покоящихся электронах должно приводить, очевидно, к δ-образному комптоновскому спектру. В дальнейшем, однако, было обнаружено, что спектральная линия КЭ шире, чем этого следовало ожидать из учета немонохроматичности и расходимости основного излучения, как показано на рисунке (2.1.1).

Джансей и более строго Дю-Монд объяснили это расхождение влиянием не учитываемого ранее начального распределения электронов по импульсам. [15]

Пусть ω1, k 1 и ω2, k 2 - соответственно частота и волновой вектор падающего и рассеянного излучений; тогда величины ω = ω1 - ω2 и k = k 1 - k 2 определяют энергию и импульс, передаваемые среде в единичном акте рассеяния. А законы сохранения в нерелятивистском приближении (ħν << mc2) выглядят следующим образом.

 

                                (2.1.1)

 

где р 1 и р 2 - импульсы электрона до и после рассеяния. Согласно (2.1.1)

 

                                     (2.1.2)


Энергетическое смещение комптоновской линии задается первым членом в (2.1.2), а второе слагаемое описывает доплеровское уширение линии, определяемое проекцией q импульса р 1 па ось k. Так как k 1 = ω1/c = 2π/λ1 и k = 2 k 1sin( /2), то из (2.1.2) следует известное соотношение Комптона для положения центра линии КЭ на свободных не взаимодействующих электронах:

 

                                   (2.1.3)

 

где  - угол рассеяния (угол между направлениями k 2 и k 1).

Тем самым было показано, что частотный комптоновский профиль несет информацию о функции одномерного (в проекции на k) распределения электронов по импульсам. Именно это обстоятельство и определяет важность изучения КЭ, так как из импульсного распределения с помощью фурье-преобразования можно получить функцию распределения электронной плотности |ψ i (r)|2. Уже ранние работы Дю-Монда с сотрудниками продемонстрировали перспективность этого метода для изучения электронного импульсного распределения, который к настоящему времени значительно усовершенствован и доведен до рабочего во многих исследовательских центрах. [16]

Основным приближением в теории КЭ является так называемая импульсная аппроксимация.

Проекция импульса

 

                        (2.1.4)


характеризует отклонение l = λ2 - λ20 длины волны сигнала λ2 от центра комптоновской линии λ20 = λ1 + 2λс sin2( /2), λс – комптоновская длина волны.

Выражение для импульсной аппроксимации имеет вид

 

                                     (2.1.5)

 

где χ i (p) - фурье-компонента волновой функции основного состояния ψ i (r). Функция J(q) называется комптоновским профилем (КП) и (2.1.5) является основным соотношением теории ИА.

 

Рис 2.1.2. Схематическая диаграмма КП в типичном эксперименте.

 

Обычно же на практике используется обратная процедура, т. е. вначале выбирается система волновых функций ψ i, находится теоретическое значение J(q) и сравнивается с экспериментальным профилем. В случае значительного расхождения берется другая система функций и процедура повторяется, т.е. если подобрать χ i (p), то можно найти распределение импульсов в кристалле. В свою очередь распределение импульсов в кристалле связано через Фурье-преобразование с распределением электронной плотности в кристалле. По распределению электронной плотности в кристалле можно судить о внешних валентных электронах, а по ним судить о химической связи вещества, т. к. внешние валентные электроны отвечают за химическую связь.

В комптоновский профиль дают вклады как внешние, так и внутриатомные электроны. Волновые функции внешних электронов в твердом теле сильно отличаются от ψ-функций свободных атомов, а для сильно связанных электронов перекрытием с соседними атомами можно пренебречь. Это приводит к тому, что вклад в КП за счет локализованных атомных электронов можно вычислить с большой точностью. Отсюда, зная полный экспериментальный профиль, простым вычитанием легко выделить вклад внешних электронов. Это является одной из основных причин исследования КП.

Для металлов и вообще веществ с большой концентрацией электронов ИА можно получить на основе идеализированной модели поведения электронов в металле, т. е. на основе теории электронного газа Ферми – Дирака и модели свободных атомов.

Для вырожденного электронного газа |χ(p ≤ pF)|2 = 3/4πpF3 и |χ(p)|2 = 0 при р > pF, где pF = ħkF импульс Ферми

 

                                        (2.1.6)

 

где n – атомная концентрация.

Из (2.1.4) следует, что комптоновский профиль электронов проводимости имеет вид «перевернутой» параболы:

 

                                       (2.1.7)

 

В модели свободных атомов с волновой функцией K-электрона ψK = (πa3)-1/2 * exp(-r/a), где а = a0/Z и а0 = ħ2/mc2 боровский радиус:

 


                                  (2.1.8)

 

где величина qK = ħ/a определяет ширину КП K-электронов.

На рисунке (2.1.3) приведен результат Филлипса и Вейсса по наблюдению рассеяния излучения Mo Kα в Li под углом 117° (верхняя кривая с точками). [17] Нижняя сплошная кривая проведена для компоненты Kα1 с поправкой на фон и поглощение, пунктирные кривые 1 (обратная парабола) и 2 рассчитаны соответственно для свободных электронов проводимости и 1s2-электронов в приближении Хартри – Фока.

Обычно величина проекции импульса на ось Z находится от середины до линии КП, не учитывая ширину спектральной линии падающего излучения. Для Mo Kα1 излучения с длинной волны λ = 0,70926 Å полуширина спектральной линии Δλ составляет 0,00029 Å. С учетом этого, для электронов с нулевым импульсом профиль будет иметь δ-образную форму, как показано на рис.(2.1.1). Если определить импульс не от середины КП, а от δ-образного пика, то появится поправка порядка ~ 1%. Однако, если учесть что КП рассчитывается с точностью до долей процента, то указанная поправка существенна. [18]

 





Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: