Выбор технологического процесса и оборудования для изготовления платы

 

Согласно технологическому заданию микрополосковые платы изготовляются методом тонкопленочной технологии. Процесс изготовления плат приведен на рисунке 6.1.

Перед нанесением пленок на подложку ее нужно подготовить, т.е выполнить подготовительные операции, которые включают в себя: резку подложки, очистку и подготовку поверхностей подложки.

Резку подложек проводят в начале технологического цикла. Применить мультиплированный фотошаблон с предусмотренными зазорами между схемами на ширину ряда.

Резку подложек проводят в начале технологического цикла. Применить мультиплексированный фотошаблон с предусмотренными зазорами между схемами на ширину ряда.

Отмывку подложек проводят кислотно – щелочной обработкой. При очистке должны быть распущены отсортированы связи между подложкой и загрязненными без нарушения поверхности самой подложки. Перед нанесением пленки должны быть удалены все продукты реакции, ионы, молекулы воды. Очищенные подложки хранить в эксикаторах или вакуумных шкафах, но не более 24 часов перед нанесением пленок.

Для вакуумного напыления используется установка УВН – 2И – 2 (ГОСТ 5,70 - 68), которая предназначена для серийного изготовления пленочных элементов в результате вакуумного цикла. Материалы используются м помощью резистивных испарений. Подколпачное устройство доработано с целью использования единого узла совмещения.


Рисунок 6.1 – Тех. процесс изготовления платы


Технические характеристики установки приведены таблице 6.1 [7]:

 

Таблица 6.1 – технические характеристики установки УВН – 2ЛЕ – 2 (ГОСТ 5.70 - 68)

Технические характеристики Значения
1. Предельное давление в рабочей камере, мм рт.ст 2. время достижения предельного давления, мин 3. Размер рабочей камеры, мм - диаметр; - высота; 4. Объем рабочей камеры, м 5. Максимальная температура испарения, 6. Нагрев подложек - температура нагрева, ; - время нагрева до заданной температуры, мин; 7. Питание от сети переломного тока: - напряжение, В; - частота, Гц; 8. Габаритные размеры, мм 9. Масса, кг 90   500 640 0,12 1500   от 100 до 400 10   380 50 1500*1050*2600 700

 

Эффективность процесса напыления определяется малым временим осаждением и равномерностью толщины пленки по поверхности подложки. В связи с этим при организации и отладке процесса должны быть обеспеченны: интенсивное испарение вещества из испарителя; прямолинейное движение молекул вещества преимущественно на подложку и достаточной равномерности облучения подложки, интенсивный и равномерный рост пленки по поверхности подложки.

Проще, чем приступить к фотолитографическим процессам, необходимо изготовить фотооригинал и фотошаблон. В нашем случае изготовить позитивный металлизированный шаблон. Для этого применить оптическое стекло (к - 8) с металлизированным рисунком из хрома. Преимущество такого фотошаблона: высокая износостойкость – механическая и термическая стабильность; влагостойкость; резко ограниченные края изображения. Фотошаблон должен иметь изображение базовых элементов и репейных знаков.

Фоторезистор наносится методом –пульверизации – распыления. В пленках получаемых таким способом расход фотерезиста уменьшается в 10 раз, дефектность слоя в 3-4 раза по сравнению с пленками, получаемыми центрифугированием. Отсутствие краевого утолщения делает метод эффективным при нанесении фоторезистора на прямоугольные подложки. Для нанесения фоторезиста применить полуавтомат ПНФ – 1Р, технические характеристики которого приведены в таблице 6.2 [7].

 

Таблица 6.2 – Технические характеристики полуавтомата нанесения фоторезиста ПНФ – 1Р

Технические характеристики Значение
1. Производительность, подложек/ч 2. Число одновременно обрабатываемых подложек, шт 3. Скорость перемежения, мм/с - форсунки; - стола; 4. Напряжение питания, В 5. Потребляемая мощность, кВт 6. Размеры, мм 7. Масса, кг До 500 До 15   100-150 10-25 380(50Гц) 2 1000*1800*1200 430

 

Для сушки и дубления фоторезистора применить установку УСДФ – 1 (д ЕМ 3,023,002), характеристики которой приведены в таблице 6.3 [7].


Таблица 6.3 – Технические характеристики установки УСДФ – 1 (д. ЕМ 3,023,002)

Технические характеристики Значения
1. Производительность, подложек/ч 2. Диапазон времени сушки и дубления, мин 3. Качество одновременно обрабатываемых подложек, шт 4. Размеры подложек, мм 5. Температура нагрева в камере при дублении,   6. Установленная мощность, кВт 7. Масса, кг До 40 От 0 до 30 10 60*48*0,5 от 20 до 200 1000*1538*1796 390

 

Для операции совмещения экспонирования применить установку полуавтоматического совмещения и экспонирования УПСЭ – 4, технические характеристики который приведены в таблице 6.4 [7].

 

Таблица 6.4 – Технические характеристики установки полуавтоматического совмещения и экспонирования УПСЭ-4

Технические характеристики Значения
1. Диаметр пластинки, мм 2. Размеры фотошаблона, мм 3. Точность совмещения, лекм 4. Производительность, подложек/ч 5. Увеличение микроскопа 6. Поя зрения микроскопа, мм 7. Время экспонирования, с 8. Потребления мощности, Вт 9. Размеры, мм 10. Масса, кг 75 100*100*100 1 100  и 3,5 и 1,75 0,1 – 240 4 2600*1930*1960 800

 

Для операции травления применить полуавтомат травления универсальный ПТУ – 1 (д ЕМ 3,240,009), технические характеристики которого приведены в таблице 6.5 [7].


Таблица 6.5 – Технические характеристики полуавтомата правления ПТУ – 1 (д ЕМ 3,240,009)

Технические характеристики Значения
1. Производительность, подложек/ч 2. Диапазон выдержек времени травления, с 3. Количество одновременно обрабатываемых подложек 4. Размер подложки, мм 5. Диапазон времени очистки подложки от шлака, с 6. Диапазоны температуры подогрева воздуха, с 7. Расход сжатого воздуха давлением 2,5 0,5ат,м /с 8. Расход деионизованной воды с удельным сопротивлением не менее 15МОн*см при температуре  и давлении 1,5 ат, л/ч 9. Установленная мощность, кВт 10. Габаритные размеры. Мм 11. Масса, кг от 15 до 180   3 шт 60*48*0,5 от 15 до 180 от 20 до 200 от 15 до 20 от 60 до 100 1 1000*1300*1800 500

 

Для контроля качества обезжиривания, проявления, травления при выполнении процесса фотолитографии использовать установку визуального контроля УВК-1 (д ЕМ 2,790,002), характеристики которой приведены в таблице 6.6 [7].

Элементарное осаждение основано на электролизе растворов под действием электрического тока и осаждения метала на катоде. Осаждения слоя металла проводится в окнах резистивной защитной маски на предварительно нанесенной токопроводящий подслой, который используется в качестве электрического контакта (полуадитивная технология).

При формировании медного проводящего слоя номинальной толщины электрическим – осаждения необходимо получить плотный (беспористый) мелкокристаллический осадок с минимальным удельным сопротивлением, не снижающий класса обработки поверхности платы обеспечивающий высокую точность выполнения последующих операций.


Таблица 6.6 – Технические характеристики установки визуального контроля УВК-1 (д ЕМ 2,790,002)

Технические характеристики Значения
1. Производительность, подложек/ч 2. Режим работы 3. Мощность 4. Общее увеличение микроскопа, крат 5. Производительность приточно – вытяжкой вентиляции, м /ч 6. Установленная мощность, кВт 7. Габаритные размеры 8. Масса, кг 20 ручной мБС – 1 88 0,6 1000*1200*1550 248

 

В качестве защитных антикоррозионных покрытий применить комбинированное покрытие . Осаждение проводится по сформированному на лицевой стороне платы рельефу схемы, что обеспечивает полную защиту торцов элементов на плате. Никелевый подслой предотвращает диффузию между медью и золотом.

С целью экономии драгметаллов на экранную сторону платы применить антикоррозийное покрытие на основе сплава олова (). Перед осаждением сплава олова применить никелевый подслой, предотвращающий диффузию, между медью и олово – висмутом.

Для электрического осаждения необходимо: ванна цеховая, источник постоянного тока, за ним лабораторный, часы сигнальные, вентилятор бытовой, микроскоп стереоскопический, а также электрощиты.

Для нанесения лака применить кисти художественные. Удаление лака производить механическим путем с помощью скальпеля.

Состав травителя, используемого для операции травления РС-3710 [7]:

- кислота азотная (плотность 1.4) – 0,035л;

- кислота фтористоводородная (плотность 1,14) – 0,005л;

- вода дистиллированная – 0,06л;

Состав травителя, используемого для операции травления меди [7]:

- аммиак водный – 0,1 л;

- водорода перекись (плотность 1,5) – 0,1л;

Состав травителя, используемого для операции травления хрома [7]:

- калий железосинеродистый – 20г;

- натрия гидрат окиси – 3г;

- вода дистиллированная – 0,75г.

Состав электролита, используемого для операции электролитического осаждения меди [7]:

- медь сернокислая – 200г/л;

- кислота серная – 40г/л;

- кислота винная – 2г/л;

- спирт этиловый – 50 г/л;

- вода дистиллированная – до 1л.

Сосав электролита используемого для операции электрического осаждения золота [7]:

- кальция дициано – (1) – аурат (в пересчете на золото) – от 9 до 10 г/л;

- калий лимонно – кислый однозамещенной – от 60 до 80г/л;

- кобальт серно – кислый – 1 г/л;

- вода дистиллированная - до 1л;

- рН раствора – от 4,5 до 4,7г/л;

Состав электролита, используемого для операции электролитического осаждения никеля [7]:

- никель сернокислый – 200г/л;

- натрий хлористый – 10г/л;

- натрий фтористый – 6г/л;

- кислота борная – 30г/л;

- нафталин – 1,5 г/л, дисульфокислоты динатрия соль – 4г/л;

- рН раствора от 5,8 до 6,3г/л.

Состав электролита, используемого для операции электролитического осаждения олово – висмута [7]:

- олово сернокислое – от 30 до 50г/л;

- кислота серная (удельный вес 1,84) – от 100 до 115г/л;

- висмут азотнокислый – от 0,3 до 0,8г/л;

- натрий хлористый – от 0,3 до 0,8г/л;

- препарат ОП – 10 – от 3 до 4г/л;

- клей мездровый – от 2 до 5г/л;

- вода дистиллированная – до 1л;

- спирт этиловый ректификованый – 50 мл/л

 







Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: