Силовой анализ ремешкового вытяжного прибора

 

Теоретические зависимости для расчета сил, действующих на волокна в ремешковом вытяжном приборе кольцепрядильной машины, основаны на классификации зон вытяжного прибор этого типа. Выделим в нем следующие зоны (Рис. 1): 1,6 – зажимы соответственно выпускной и питающей пар; 2 – неконтролируемое пространство; 3 – ремешковый зажим; 4,5 – зоны между ремешковым зажимом и питающей парой, причем в зоне 4 располагается задний участок волокна. Эти зоны различны по геометрическим свойствам, свойствам поверхностей и скоростям, воздействующим на волокна мычки рабочих органов; в зонах 2 и 4 рабочие органы на мычку непосредственно не воздействуют (влияние ограничителя ширины мычки в данном исследовании пренебрегали).

 

Рисунок 1. Зоны ремешкового вытяжного прибора кольцепрядильной машины

 

Как наиболее общий случай рассмотрим силы, действующие на самое длинное волокно, располагающееся в зонах 1–4.

В зонах 1 и 3 в сечениях мычки можно выделить центральную область, все волокна которой контактируют только с соседними волокнами, и периферийную, волокна которой контактируют как с соседними волокнами, так и с поверхностями рабочих органов. В зонах 2 и 4 волокна периферийной области контактируют только с рядом расположенными волокнами, но число этих контактов меньше, чем в центральной области, так как область возможного контактирования их ограничена поверхностью мычки.

В любом сечении мычки контакты «волокно – волокно» могут вызывать появление как ускоряющих, так и сдерживающих сил, причем любое из этих событий имеет случайный характер. Скорости рабочих органов фиксированы, поэтому для быстро движущихся волокон контактирования с ремешками порождает сдерживающие силы, а для медленно движущихся и контактирующих с цилиндром или валиком – ускоряющие.

Закономерности сжатия мычки в вытяжном приборе определяются внешними сжимающими силами, действующими на рабочие органы, геометрическими и физическими свойствами поверхностей рабочих органов, а также свойствами волокон и мычки в целом. Эти силы сжимают мычку неравномерно как в продольном (ось У), так и в поперечном (ось Х) направлении. Это обуславливает различие в напряжение сжатия и в числе контактов, приходящихся на единицу длины одного волокна, что зависит от координат, которые характеризуют положение рассматриваемого участка волокна в поле вытягивания.

Обозначив символом mkj (x, y) среднее число контактов волокна на единицу его дины, где j – условный номер зоны, k – тип контрпары, имеем классификацию фрикционных контактов волокон мычки по этим признакам (табл. 1)

 

Таблица 1. Классификация фрикционных контактов волокон мычки

Тип контрпары k

Зоны вытяжного прибора j

1 2 3 4
«Волокно-волокно» (в центральной области) m11(x, y) (c, y) m21 (x, y) (c, y) m31 (x, y) (c, y) m41 (x, y) (c, y)
«Волокно-волокно» (в периферийной области): с валиком с цилиндром     m12 (x, y) (c, y) m12 (x, y) (c, y) m22 (x, y) (c, y) m32 (x, y) (c, y) m42 (x, y) (c, y)
«Волокно-валик» m13 (x, y) (y)      
«Волокно-цилиндр» m14 (x, y) (y)      
«Волокно-ремешок»     m35 (x, y) (c)  

 

В соответствии с этой классификацией в вытяжном приборе рассматриваемого типа имеются 12 типов контактов, в которых возникают соответствующие силы трения.

С учетом принятых на рис. 1 обозначений формула для сил трения, приходящихся на единицу длины волокна, примет вид

 

 

где  – напряжение поперечного сжатия волокон

,  – эмпирические коэффициенты.

Для ориентированного вдоль оси y волокна, ось конфигурации которого расположена на расстоянии x от продольной (вдоль оси y) плоскости симметрии мычки, имеем силы трения для зоны j:

Для волокон, расположенных в центральной области сечения мычки:

 


Для волокон, расположенных в периферийной области:

 

 

где y1, y2 – границы участков волокна в соответствующих зонах вытяжного прибора, а остальные обозначения соответствуют аналогичным обозначениям в формуле (1).

Правая часть формулы (3) содержит два слагаемых. Первое, из которых соответствует силам трения в контактах «волокно – волокно», а второе – в контактах «волокно – рабочий орган». Формулы (2) и (3) могут использоваться для расчета как ускоряющих, так и сдерживающих сил в любой зоне вытяжного прибора. При этом, например, в случае ускоряющих сил коэффициенты akj, bkj, a,kj, b,kj, a,kj, b,kj. Соответствуют динамическому трению, а P(y) – вероятности контактирования с быстро движущимися волокнами. В альтернативном случае эмпирические коэффициенты соответствуют статическому трению, а P (y) – вероятности контактирования медленно движущимися волокнами.

На усредненное (гипотетическое) волокно в зонеj действует сила трения

Где ,  – вероятности принадлежности волокна с границами y1 и y2 к центральной и периферийной областям сечения мычки.

На волокно некоторой протяженности ƛ, расположенного в зонах 1–4, действует сила

 

 


В зависимости от того, вычисляются ли по формулам (2) и (3) сдерживающие или ускоряющие силы отдельных зон, Fƛ является соответствующей силой для всего волокна.

Вероятностные характеристики процесса рассчитываются по методике, изложенной в п. 3.3.2.4.

Среднее значение ускоряющей силы для волокна с длиной ƛ, оси конфигураций которых расположены на различных расстояниях х от плоскости симметрии мычки, равно

 

 

Где m – число волокон, использованных для расчета отдельных варьирующих значений F.

Аналогичным образом могут быть рассчитаны ускоряющие и сдерживающие силы, действующие на волокна различной длины, что дает возможность прогнозировать функцию движения волокон в вытяжном приборе прядильной машины в зависимости от параметров конструкции, режима работы и характеристик свойств волoкон и продукта и изменять её таким образом, чтобы отличие её от оптимальной функции было сведено к минимуму.

 




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: