Федеральное агентство по образованию
Государственное образовательное учреждение
Высшего профессионального образования
![]() |
КОНТРОЛЬНАЯ РАБОТА
по дисциплине: ПРОГНЕЗИРОВАНИЕ НАЦИОНАЛЬНОЙ ЭКОНОМИКИ
Вариант 9
Исполнитель:
___________________________
(дата, подпись)
Преподаватель:
Екатеринбург
2010
Задание 1.
Имеются данные объема поступлений по налоговым платежам и другим доходам в бюджетную систему РФ по региону (млн. руб.)
| Период | Объем поступлений (млн. руб.) |
| Январь | 2595,90 |
| Февраль | 2885,59 |
| Март | 3238,04 |
| Апрель | 1016,66 |
| Май | 4027,65 |
| Июнь | 3208,17 |
| Июль | 3721,02 |
| Август | 4283,87 |
| Сентябрь | 3587,29 |
| Октябрь | 4111,46 |
| Ноябрь | 4451,21 |
| Декабрь | 6757,75 |
1. Постройте прогноз объема поступлений по налоговым платежам и другим доходам в бюджетную систему РФ на январь-февраль следующего года, используя методы: скользящей средней, экспоненциального сглаживания, наименьших квадратов.
1) Метод скользящих средних (разработка прогнозов):
Вычислим прогнозное среднее:
1) Определим величину интервала сглаживания, равную 3.
2) Рассчитаем скользящую среднюю для первых трех периодов:
mф = (Уя +Уф + Ум)/3 = 8719,53/3 = 2906,51 млн. руб.
Далее рассчитываем m для следующих трех периодов:
mь= (Уф+Ум+Уа) /3 = 2380,1 млн. руб.
Далее по аналогии рассчитываем m для каждых трех рядом стоящих периодов и составляем таблицу для решения задачи.
mа = (Ум +Уа +Умай) )/3 = 2760,78 млн. руб.
mмай = (Уа+Умай +Уи) /3 = 2750,83 млн. руб.
mиюнь = (Умай+Уи+Уиюль)/3 = 3652,28 млн. руб.
и так далее (вычисленные данные в таблице 1).
Таблица 1
| Месяцы | Уровень объема поступлений в бюджет РФ, млн. руб. | Скользящая средняя m | Расчет средней относительной ошибки /Уф –Ур/Уф*100 |
| январь | 2595,90 | - | - |
| февраль | 2885,59 | 2906,51 | 12 |
| март | 3238,04 | 2380,1 | 17,52 |
| апрель | 1016,66 | 2760,78 | 14,74 |
| май | 4027,65 | 2750,83 | 72,87 |
| июнь | 3208,17 | 3652,28 | 9,3 |
| июль | 3721,02 | 3737,69 | 13,84 |
| август | 4283,87 | 3864,06 | 0,5 |
| сентябрь | 3587,29 | 3994,21 | 9,8 |
| октябрь | 4111,46 | 4049,99 | 11.34 |
| ноябрь | 4451,21 | 5106,81 | 1,5 |
| декабрь | 6757,75 | - | - |
| Итого | 43884,61 | - | 163,41 |
| прогноз | |||
| январь | 5875,66 | ||
| февраль | 5988,9 |
Вычислив скользящую среднюю для всех периодов, построим прогноз на январь, применяя формулу: Уt+1 = mt-1 + 1/n(Уе – Уе-1), если n =3.
Уянварь = 5106,81 + 1/3(6757,75 – 4451,21) = 5875,66;
m = (4451,21 + 6757,75 + 5875,66)/3 = 694,87
Построим прогноз на февраль:
Уфеврарь = (5694,87 + 1/3(5875,66 – 6757,75) = 5988,9
(Результаты заносим в таблицу).
Рассчитываем среднюю относительную ошибку:
έ=
= 163,41/10 = 16,341.
Прогнозирование на основе метода экспоненциального сглаживания
От величины α будет зависеть, как быстро снижается вес влияния предшествующих наблюдений. Чем больше α, тем меньше сказывается влияние предшествующих лет. В данном случае мы используем большую величину α,(намного превышающую 1), что приведет к учету при прогнозе в основном влияния последних наблюдений и из-за этого прогноз может быть неточным.
Точного метода для выбора оптимальной величины параметра сглаживания α нет. При этом α вычисляется по формуле:
, (3)
где n – число наблюдений, входящих в интервал сглаживания.
Задача выбора U о (экспоненциально взвешенного среднего начального) решается следующими путями:
1) если есть данные о развитии явления в прошлом, то можно воспользоваться средней арифметической, и Uо равен этой средней арифметической;
2) если таких сведений нет, то в качестве Uо используют исходное первое значение базы прогноза Y1.
Также можно воспользоваться экспертными оценками.
Метод экспоненциального сглаживания в данном случае практически не «срабатывает». Это обусловлено тем, что рассматриваемый экономический временной ряд слишком короткий (11 наблюдений). Т.е. прогноз сделать невозможно.
Ut = (U1 +U2 +…+Un) /n = 43884,64/12= 3657,1; Uо = 2595,90;
а = 2/ (12+1) = 0,15;
Расчетная таблица 2
| Месяцы | Объем поступлений в бюджет РФ, млн. руб. | Экспоненциально взвешенная средняя, Ut | Расчет средней относительной ошибки | ||
| 1 способ | 2 способ | 1 способ | 2 способ | ||
| Январь | 2595,90 | 1478,4 | 2360 | 1,2 | 0,2 |
| Февраль | 2885,59 | 1628 | 2359 | 0,1 | 0,4 |
| Март | 3238,04 | 1751 | 2305 | 0,1 | 0,1 |
| Апрель | 1016,66 | 1800,3 | 2201 | 1,7 | 0,4 |
| Май | 4027,65 | 1782 | 2080 | 0,1 | 1,3 |
| Июнь | 3208,17 | 1732,2 | 1991 | 0,1 | 1,2 |
| Июль | 3721,02 | 1702,4 | 1863 | 2,6 | 0.1 |
| Август | 4283,87 | 1623,1 | 1735 | 0,1 | 0,8 |
| Сентябрь | 3587,29 | 1536,4 | 1594 | 0,05 | 2,4 |
| Октябрь | 4111,46 | 1429 | 1470 | 0,2 | 0,5 |
| Ноябрь | 4451,21 | 1333,12 | 1331 | ||
| Декабрь | 6757,75 | ||||
| Итого | 43884,61 | 17534,82 | 21289 | 5,25 | 7,5 |
| Прогноз | |||||
| Январь | |||||
| Февраль | |||||
1 способ: Uя = 2595,9*0,15 + (1-0,15) * 3657,1 = 3497,92;
Uф = 2885,59 * 0,15 + (1-0,15)*3497,92 = 3406,07;
Uм = 3238,04*0,15 + (1-0,15)*3406,07 = 3380,87;
Средняя относительная ошибка: Э = 5,25/11 =0,48 или 48%;
Э = 7,5/11 = 0,68 или 68%.







