Зависимость тока насыщения стока от температуры

В предыдущем разделе мы видели, что ввиду противоположного действия температуры на подвижность носителей и на контактную разность потенциалов у полевого транзистора, напряжение Vнac которого равно примерно 0,6 в, температурный коэффициент тока  равен нулю. Анализ температурной зависимости тока  можно обобщить на любой ток насыщения стока, дифференцируя уравнение (1.14) по температуре так, как это было сделано в уравнении (2.1):

 

 

Ход преобразований при упрощении этого уравнения такой же, как и в случае уравнения (2.1). Как и ранее, первый член можно упростить путем простой подстановки; для упрощения второго члена вспомним, что поскольку Vзи представляет собой внешнее напряжение, то можно считать, что при исследовании величины  оно остается постоянным. Тогда

 

 (2.14)

 

Это означает, что

 

 (2.15)

 (2.16)

 

Поскольку мы можем поддерживать dVзи/dT равным нулю,

 

 (2.17)


Следовательно, уравнение (2.13) приводится к виду

 

 (2.18)

 

Воспользовавшись квадратичным приближением (1.54), уравнение (2.18) можно переписать, введя статические параметры  и Vнac. Дифференцирование уравнения (1.54) по Vзи дает

 

 (2.19-2.20)

 

Подставляя уравнения (2.20) и (2.8) в уравнение (2.18), получим

 

 (2.21)

 

Уравнение (2.21) представляет собой выражение для температурного коэффициента тока стока при любом смещении. Нулевое значение температурного коэффициента имеет место, когда правая часть уравнения (2.21) равна нулю. Это произойдет при некотором значении тока , которое мы обозначим IcQ и которое будет равно

 

 (2.22)

 

Где


 (2.23)

 

Величины m0 и Vнас0 соответствуют некоторой начальной (отсчетной) температуре Т0. Следовательно, ток  можно выразить через его значение I при отсчетной температуре:

 

 (2.24)

 

Подставляя (2.24) в (2.22),. мы можем убедиться в том, что смещение, при котором температурный коэффициент  равен нулю, очень слабо зависит от температуры:

 

 (2.25)

 

Поскольку п приблизительно равно 2, абсолютная температура практически не входит в это уравнение. На рис. 33 приведены характеристики передачи одного конкретного полевого транзистора, снятые при трех различных температурах; видно, что ток IcQ, соответствующий точке пересечения характеристик, практически не зависит от температуры.

 


 

На рис. 34 построен график уравнения (2.25); сравнение этой кривой с экспериментальными данными, полученными на 24 образцах приборов, показывает, что использованный способ расчета дает вполне удовлетворительные результаты

Тот факт, что у полевого транзистора при некоторых условиях температурный коэффициент тока стока равен нулю, позволяет заключить, что этот прибор может хорошо работать в качестве усилителя постоянного тока.

Существует более удобная форма записи уравнения (2.21), в которой температурный коэффициент полевого транзистора выражен через dVзи/dT при постоянном Iс нас. Эта форма записи удобна, так как на практике принято указывать в качестве параметра усилителя постоянного тока величину изменения входного напряжения, необходимого для поддержания постоянным выходного сигнала. Производная dVзи/dT определяется таким же образом, как и производная в уравнении (2.21), за исключением того, что постоянным предполагается ток h нас, а не напряжение Vзи. Это равносильно тому, что полевой транзистор питается от источника стабильного тока. Алгебраические преобразования предоставляется провести читателю; окончательный результат имеет вид

 


 (2.26)

 

Графики этого уравнения построены на рис 35, на них представлена зависимость dVзи /dT от Iс нас /Iс нас0, a Vнac служит текущим параметром. Точки пересечения оси абсцисс могут быть получены из уравнения (2.26); например, dVзи /dT = 0 при Vнac = 0,6 в и Iс нас /Iс нас0= 1.

 

Рис. 35. К решению уравнения (2.26).

 

При очень малых токах стока температурный коэффициент Vзи приближается к dVнac/dT, равному примерно 2 мв/град.

 





Пробивное напряжение

В гл. 1 мы видели, что механизм пробоя полевого транзистора можно объяснить возникновением лавинного процесса в переходе затвор - канал. Мы видели также, что обратное напряжение диода затвор — канал изменяется вдоль длины затвора, достигая максимального значения у стокового конца канала. Именно здесь происходит пробой полевого транзистора, не имеющего технологических дефектов. Если выводы стока и истока поменять местами, то пробивное напряжение почти не изменится. Поскольку для уменьшения тока стока необходимо увеличить обратное напряжение в цепи исток — затвор, то при фиксированном напряжении питания сток — исток.кажущееся напряжение пробоя в области стока должно монотонно уменьшаться вместе с уменьшением тока. Рассмотрим характеристики, изображенные на рис. 30. Когда Vзи=0, пробой наступает при V= -27 в (прибор с каналом р-типа). Вспомним теперь, что в действительности пробой происходит между областями стока и затвора; это значит, что в цепи затвора течет большой ток, и поскольку затвор имеет нулевой потенциал по отношению к истоку, то пробивное напряжение цепи транзистора.

Если теперь повысить напряжение Vзи на +0,2 в, то напряжение пробоя цепи затвор — сток остается, как и прежде, равным —27 в, но кажущееся напряжение пробоя цепи сток — исток будет равным —26,8 в. Предельным для прибора является пробивное напряжение цепи сток — затвор. Теоретически оно будет постоянным независимо от потенциала истока, который может изменяться от потенциала стока в. одном крайнем случае до потенциала затвора в другом. Обычно это напряжение определяется при разомкнутой цепи истока и в согласии с принятой системой обозначений ему соответствует символ BVC30. Если на исток подано некоторое напряжение смещения X в, то кажущееся напряжение пробоя цепи сток — исток, обозначаемое BVсиХ, будет связано с напряжением BVc30 следующим соотношением:

 

BVсиХ = BVc30+VзиХ. (2.27)

 

4.5 Токи утечки

 

Затвор и канал в униполярном полевом транзисторе образуют р-n-переход; ток через этот переход и напряжение на нем подчиняются известному экспоненциальному соотношению:


 (2.28)

 

где I3 — ток затвора; I30 — обратный ток затвора при насыщении; V3K — напряжение цепи затвор — канал (при прямом смещении положительное); k—постоянная Больцмана, дж/град; Т—абсолютная температура, °К.

Когда в качестве входного вывода полевого транзистора используется затвор, входная динамическая проводимость прибора определяется наклоном входной вольтамперной характеристики, изображенной на рис. 2.7; эта кривая представляет собой качественный график уравнения (2.28) для области, близкой к началу координат. Из уравнения (2.28) dI3/dV3K равно

 

 (2.29)

 

Величина kT/q при комнатной температуре равна примерно 25 мв, а ток I30 униполярного полевого транзистора может быть равным всего 10-10 а. При I3=0 (Vзк = 0) входное сопротивление такого полевого транзистора при комнатной температуре может достигать 250 Мом и с увеличением обратного смещения будет повышаться. Поскольку полевой транзистор обычно работает при обратном смещении, на затворе, он, очевидно, представляет собой прибор с весьма высоким входным импедансом. Эквивалентная схема входной цепи полевого транзистора, находящегося при нормальном смещении, состоит из очень большого по величине нелинейного активного сопротивления, шунтированного конденсатором, номинальная емкость которого для реальных приборов лежит в пределах от 1 до 50 пф, и генератора очень слабого стабильного тока. Уравнение (2.29) показывает, что нелинейное входное сопротивление может стать весьма малым, если на затвор транзистора подать прямое смещение. Этим недостатком не обладают полевые транзисторы с поверхностным барьером.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: