Обобщение методов векторного анализа

Из практики 3D-моделирования хорошо известно, что основным математическим инструментом в данной прикладной сфере является раздел математики, известный как векторный анализ. Это напрямую связано с вычислением координат проекций (на основе скалярного произведения векторов) либо, например, с определением векторов нормалей к поверхности (векторное произведение). В оптимизационных расчетах большую роль играет решение систем линейных уравнений, в частности для регрессионной аппроксимации. Последняя проблема обычно относится к более общему разделу линейной алгебры, где применяется понятие матриц. Однако оказалось возможным обобщить все указанные задачи на основе более полного раскрытия свойств векторных пространств, не прибегая к понятию матрицы.

Так, понятие векторного произведения в более общем виде имеет смысл построения ортогонального дополнения в некотором N-мерном векторном пространстве к базису в его (N – 1)-мерном подпространстве, которое может быть определено с точностью до ненулевого скалярного коэффициента. Стандартное в математике определение векторного произведения по сути представляет собой алгоритм наиболее простого нахождения подходящего ортогонального вектора для 3D-случая. Проблема выбора коэффициента при этом неявно снимается за счет удобного набора чисто линейных операций над координатами (умножения-сложения), то есть без нормирования.

Аналогичным образом проблема решения системы из N линейных уравнений сводится к обратной задаче восстановления вектора по его проекциям на некотором неортогональном ненормированном базисе (каждое уравнение представляет собой N-мерное скалярное произведение искомого неизвестного вектора с базисными, то есть попросту проекции). Решение в общем виде может быть представлено линейной комбинацией из N ортогональных дополнений (также с точностью до ненулевого скалярного коэффициента) ко всем N поднаборам из (N – 1)-мерных подпространств с коэффициентами, пропорциональными исходным проекциям (значениям в правой части системы). Наиболее простой алгоритм решения — ортогонализация (например, на основе хорошо известной процедуры Грама-Шмидта), нормирование и умножение результата на вектор проекций (правая часть системы). В сравнении с известным стандартным методом Гаусса-Жордана это дает более простой и быстрый результат. Относительный недостаток — необходимость взятия N квадратных корней при нормировании.  

 

Инструментарий для программных реализаций

Программные пакеты, позволяющие создавать трёхмерную графику, то есть моделировать объекты виртуальной реальности и создавать на основе этих моделей изображения, очень разнообразны. Последние годы устойчивыми лидерами в этой области являются коммерческие продукты: такие как 3ds Max, Maya, Lightwave 3D, SoftImage XSI, Sidefx Houdini, Maxon Cinema 4D и сравнительно новые Rhinoceros 3D, modo, Nevercenter Silo или ZBrush. Кроме того, существуют и открытые продукты, распространяемые свободно, например, пакет Blender (позволяет делать и производство моделей, и последующий рендеринг), K-3D и Wings3D (только создание моделей с возможностью последующего использования их другими программами). Некоторое время назад Caligari закрыла разработки по trueSpace и она также стала бесплатной.

Бесплатная программа SketchUp позволяет создавать модели, совместимые с географическими ландшафтами ресурса Google Планета Земля, а также просматривать в интерактивном режиме на компьютере пользователя несколько тысяч архитектурных моделей, которые выложены на бесплатном постоянно пополняемом ресурсе Google Cities in Development (выдающиеся здания мира), созданные сообществом пользователей.

Трехмерная графика активно применяется в системах автоматизации проектных работ (САПР) для создания твердотельных элементов: зданий, деталей машин, механизмов, а также в архитектурной визуализации (сюда относится и так называемая "виртуальная археология"). Широко применяется 3D графика и в современных системах медицинской визуализации.

 

Применение 3d на уроках геометрии

С появлением 3d технологий у нас появилась возможность наглядно демонстрировать геометрические тела по средствам ИКТ. Изучение 4-мерных геометрических тел затруднительно в силу отсутствия возможности работать с их материальными моделями. Но становится возможным представить их по проекциям на гиперплоскость, демонстрируемым компьютерной программой. С помощью этой программы очень красиво может быть решена задача 4-мерного куба и других объемных геометрических тел. Трехмерные модели можно создавать не только для реализации их в специализированном программном обеспечении, но и создать анимированный видеоролик. Это позволит демонстрировать тела вращения, просмотр фигуры с различных ракурсов, как происходит сечение фигур и многие другие их свойства.

Преимущество видеоролика в том, что его можно демонстрировать и без компьютера. Достаточно иметь лишь телевизор и видеопроигрыватель. Так же этот ролик можно записать и на аналоговый носитель, если нет возможности воспроизвести его на цифровом проигрывателе, но есть видеомагнитофон. Именно поэтому я и решил создать именно видео файлы потому, что они просты и удобны в реализации.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: