Углеродно-кислородный каротаж

Как известно, при облучении горных пород быстрыми нейтронами последние испытывают различные взаимодействия с ядрами вещества, передавая им часть своей энергии. В процессе замедления до энергии теплового движения атомов (Е»1·10 -2 эВ), происходят упругие и неупругие рассеяния нейтронов на ядрах атомов, кроме того, тепловые нейтроны участвуют в процессах термализации, процессах диффузии и, наконец, поглощаются ядрами.

В результате первых соударений (1-2 акта) наиболее вероятным взаимодействием является неупругое рассеяние, при этом нейтроны замедляются до энергии ~1 МэВ, передавая большую часть энергии на возбуждение ядра-мишени. Вероятность неупругого рассеяния тем выше, чем выше энергия нейтронов. Возврат ядра-мишени из возбуждённого состояния происходит за 10-14 с и сопровождается вторичным гамма-излучением, которое называется гамма-излучением неупругого рассеяния (ГИНР). Спектр ГИНР является индивидуальной характеристикой ядра.

Дальнейшее замедление нейтронов происходит в процессе упругого рассеяния, при котором кинетическая энергия нейтрона до соударения переходит в кинетическую энергию нейтрона и ядра-отдачи после соударения, эти процессы продолжаются до достижения нейтроном тепловой энергии. Наибольшим сечением упругого рассеяния обладает водород, его присутствие в окружающей среде играет основную роль в процессе замедления. Упругое рассеяние не сопровождается гамма-излучением.

Замедлившись до тепловой энергии, нейтроны захватываются ядрами элементов горных пород. Последствием радиационного захвата теплового нейтрона почти всегда является немедленное (10-23 с) излучение гамма-квантов (ГИРЗ).

Спектр ГИРЗ также является индивидуальной характеристикой ядра. Реже захват тепловых нейтронов приводит кактивации ядра - оно становится радиоактивным с некоторым периодом полураспада.

Энергия связи большинства породообразующих элементов составляет 7¸8 МэВ, следовательно, при радиационном захвате тепловых нейтронов возникает жесткое гамма-излучение. При поглощении одного теплового нейтрона испускаются 3¸4 гамма-кванта.

Процесс замедления быстрых нейтронов в результате упругих и неупругих взаимодействий длится порядка нескольких первых микросекунд, таким образом, через несколько микросекунд после облучения вещества быстрыми нейтронами (вспышка) возникает излучение радиационного захвата. Время жизни тепловых нейтронов в типичных разрезах нефтегазовых скважин колеблется от 100 до 500 мкс, следовательно, во время вспышки тепловые нейтроны от предыдущих вспышек, а также те нейтроны, энергия которых приблизилась к энергии теплового движения во время вспышки, продолжают генерировать гамма-излучение захвата. При регистрации спектров ГИНР гамма-излучение радиационного захвата является фоновым. Фоновую составляющую спектров измеряют при выключенном генераторе нейтронов («фоновая пауза»). Таким образом, для получения «чистых» спектров ГИНР необходимо регистрировать спектр ГИРЗ и вычитать его из измеренных спектров ГИНР.

Ввиду сложности спектров ГИНР и ГИРЗ ограничимся рассмотрением тех элементов горных пород и насыщающих их флюидов, присутствие которых имеет основное значение для решения поставленной задачи, в первую очередь элементы С, О - для определения присутствия углеводородов, и Ca, Si - как основные элементы, характеризующие состав горных пород (известняк, песчаник). Для основных породообразующих элементов в таблице 4.3 приведены: энергии порога неупругого рассеяния Eпор, а также наиболее характерные энергетические линии ГИНР и ГИРЗ.

Данные, приведённые в таблице 4.3, позволяют сделать следующие выводы:

·   характерные энергетические линии ГИНР и ГИРЗ основных породообразующих элементов лежат в пределах 1¸8 МэВ - это позволяет ограничить диапазон регистрируемых энергий шкалой до 10 МэВ;

·   пороговая энергия ГИНР для углерода и кислорода составляет 4.8 и 6.44 МэВ, следовательно, для возбуждения реакции неупругого рассеяния необходимо применение излучателя нейтронов с энергией более 6.44 МэВ.

Таблица 4.3. Основные породообразующие элементы и их характеристики гамма-излучения неупругого рассеяния и радиационного захвата нейтронов

Элемент Среднее содержание в горных породах, % Eпор, МэВ Энергия ГИНР, МэВ Энергия ГИРЗ, МэВ
12C 0.02298 4.80 4.43 4.95, 3.68 1.26
16O 46.89 6.44 6.13 7.12 2.18, 1.09 3.27
40Ca 2.87 4.55 3.73 3.90 1.94, 6.42 4.42
28Si 28.54 1.90 1.78 2.84 3.54, 4.93 1.27
56Fe 4.26 0.86 1.24 2.61 7. 63,7.65 5.9
1Н 0.99985 - - 2.23

 

Основой выбора методики углеродно-кислородного каротажа служит различие содержания углерода и кислорода в нефти и воде. Содержание «С» в различных нефтях колеблется от 82 до 87%, О от 0.02 до 1.65%. Содержание «О» в воде по массе составляет 85.82%, при определении нейтронно-активационным анализом проб пластовых вод присутствия углерода обнаружено не было.

Таким образом, основа метода углеродно-кислородного каротажа состоит в том, что энергия ГИНР и ГИРЗ характерна для каждого элемента, содержащегося в скважине. В результате неупругих рассеяний на ядрах углерода (С) образуется ГИНР с энергией 4.8 МэВ, на ядрах кислорода - 6.44 МэВ. Вместе с тем, количество гамма-квантов, зарегистрированных детектором в определенных энергетических областях, пропорционально концентрации элементов, испускающих данные гамма-кванты. Следовательно, измерение скоростей счета в различных, характерных для каждого элемента энергетических областях, даёт возможность определения относительного содержания элементов в горных породах.

Измерительный зонд содержит излучатель быстрых (14 МэВ) нейтронов и один - два детектора гамма-излучения. Длина зонда 0,4 - 0,6 м, точка записи - середина зонда. Калибровки проводят на трех стандартных образцах, воспроизводящих значения насыщенности пласта. Одним из стандартных образцов является емкость с пресной водой не менее 1,5 м в диаметре и 2 м по высоте (для исключения влияния среды за стенами емкости). Рекомендуемая скорость каротажа - 40-50 м/ч.

В прибор С/О-каротажа (АИМС-ОАО НПЦ «Тверьгеофизика») генератор нейтронов производит короткий (длительностью 5-8 мкс) выброс нейтронов каждые 50 мкс. Гамма-лучи, возникающие в породе в результате неупругого рассеивания и захвата нейтронов, регистрируются (с измерением их энергии) системой кристаллический детектор - многоканальный анализатор. Система ведет запись времени прихода гамма-квантов (256 временных каналов) и спектральной энергии гамма-квантов неупругого рассеивания (256 каналов) и захвата (еще 256 каналов).

Отношение С/О зависит от пористости, литологии, характера насыщения пластов, заполнения скважины, но практически не зависит от минерализации пластовых флюидов, что является достоинством метода. Для учета влияния вещественного состава пород по спектрам ГИНР и ГИРЗ рассчитываются отношения кальция и кремния (Ca/Si). Интерпретационным параметром метода является разность отношений углерода-кислорода (R С/О), и кальция-кремния (R Сa/Si).Кажущееся объемное содержание нефти в породе (k н,к) определяется с помощью зависимостей вида:

k н,к = а (R С/О - b R Сa/Si) + с, где a, b, с - константы. (4.1)

 

По спектрам неупругого рассеивания вычисляется содержание в породе Са, Si, С и О (или отношение С/О), а по спектрам захвата - содержание Са, Cl (отношение Ca/Si определяется также и по «неупругим» спектрам). Коэффициент пористости рассчитывают по соотношению спектров захвата и упругого рассеивания. Спектр данных времени прихода гамма-квантов используют для независимого расчета  и пористости. Отношение С/О используют для расчета нефте-водонасыщения за обсадной колонной.

При контроле за разработкой нефтегазовых месторождений применение данного метода позволяет решать следующие геолого-промысловые задачи: отслеживание продвижения водонефтяного (ВНК) и газожидкостного (ГЖК) контактов и закачиваемых вод в неперфорированных пластах, оценка степени заводнения перфорированных пластов независимо от минерализации пластовых вод. При контроле испытаний в колонне - локализация притока и установление характера насыщения приточных прослоев в перфорированном пласте. Кроме этого, подтверждена перспективность изучения разрезов скважин старого фонда методом С/О с целью выявления и оценки пропущенных залежей. Также метод применяется для сопровождения процесса интенсификации нефтеотдачи коллекторов.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: