Проектируем трансформаторы

 

Самым наглядным и живым воплощением теории электрического магнетизма является трансформатор – устройство для преобразования электрического напряжения. Попробуем спроектировать трансформатор для питания самодельного гитарного усилителя.

В простейшем трансформаторе на железный сердечник наматывают две обмотки из изолированного провода. Первичную обмотку подключают к источнику переменного напряжения, например к бытовой электросети 220 В. В обмотке возникает переменный ток, который создает переменный поток поля Ф (см. § 43). Этот переменный поток охватывает вторичную обмотку. В ней возникает напряжение самоиндукции: uL = – Ф/t. Если к концам вторичной обмотки подключить нагрузку, в ней возникнет ток i = uL/Z. Следует подчеркнуть, что обмотки трансформатора изолированы друг от друга. Энергия из одной обмотки передаётся в другую через поток поля, который зависит от толщины сердечника. Напряжение во вторичной обмотке зависит от её индуктивности, в основном, от числа витков (см. 37.1). Изменяя количество витков, можно получить нужное напряжение на выходе. Из справочника узнаем следующие рекомендации для конструирования бытовых трансформаторов.

Сердечник собирают в виде пакета из плоских Ш – образных пластин или из многослойных штамповок З – образного профиля.

Каркас с обмотками надевают на среднюю стойку пластин «Ш» или на перемычку «З».

Сначала наматывают вторичную обмотку, затем поверх неё – первичную.

Для вторичной обмотки рекомендовано оптимальное напряжение 36 вольт.

Допустим, гитарный усилитель должен иметь максимальную мощность 17 Вт (такой усилитель продавался в магазине музыкальных инструментов).

По формуле P = IU определяем максимальные токи в обмотках:

I1 = P/U1 = 17/220 = 0.03 А; I2 = P/U2 = 17/36 = 0.47 А (почти 0.5 А).

По справочнику находим сечения проводов для токов 0.03 А и 0.5 А, и сечение сердечника для мощности 17 Вт. Практика показывает, что не всегда на складе имеется то, что предписано справочником. Можно брать материалы из тех, что есть, но с запасом прочности. Если на полке вы обнаружили пару заводских бобин с проводами диаметром 0.15 и 0.5 мм, и готовый Ш-сердечник с сечением от 6 до 9 см2, то в принципе это то, что нужно. Для экономии провода можно принять n1 = 1760 (по 8 витков на 1 вольт сети). Тогда n2 = 36 х 8 = 288 (витков). Добавив 12 витков на компенсацию потерь, получим: n2 = 300 (витков). На простейшем станке, снабженном счетчиком витков, намотать обмотки для трансформатора не составит особого труда. Согласно рекомендациям, на картонный каркас сначала наматываем 300 витков из провода диаметром 0.5 мм. Затем поверх наматываем 1760 витков из провода диаметром 0.15 мм. Концы проводов припаиваем к контактным площадкам на каркасе, который надеваем на среднюю стойку Ш – пластины.

Если первичную обмотку трансформатора соединить с сетью 220 В, а к вторичной подключить вольтметр, прибор покажет, что она генерирует напряжение 38 вольт. Это то, что надо. Лишние 2 вольта «упадут» на схемах выпрямителя, а к усилителю поступят 36 вольт постоянного напряжения. При максимальной громкости гитары ток на выходе усилителя будет: I = 0.5 А. Умножая силу тока на напряжение U = 36 В, получим максимальную мощность P = I U = 0.5 х 36 = 18 (Вт). Это даже больше, чем заказывал гитарист. Поклонники рок-музыки должны помнить, что рокн-ролл жив благодаря Майклу Фарадею, который первым сформулировал принципы электрического магнетизма.

 

ЧАСТЬ III

 

Глава 6. Атомы

 

Атом водорода

 

Все знают, что свет излучается атомами раскаленного вещества (достаточно взглянуть на угли горящего костра). Несмотря на очевидность факта, атомную физику преподают после оптики. На наш взгляд, логичнее сначала объяснить, как устроен атом, а уже потом рассказывать, как он излучает свет. Исторически так сложилось, что Герц завершил электромагнитную теорию Максвелла задолго до того, как Резерфорд открыл, а Бор объяснил устройство атома водорода. В университетах сразу начали преподавать волновую теорию света, которая объясняла интерференцию, дифракцию, в общем, то, что было известно еще Ньютону. Потом была открыта линейчатость атомных спектров, фотоэффект и многое другое, что волновая теория объяснить не могла. Появилась новая, квантовая теория света. Тем не менее, вклад Максвелла и Герца в физику был настолько велик, что отказ от электромагнитной теории света стал бы неприличным. Так сложилась традиция сначала читать классическую волновую оптику и только потом – новую теорию квантов.

Неудобства такой методики очевидны. Сам Фейнман, оказавшись заложником традиции, был вынужден остановиться посередине своего знаменитого курса лекций и сказать: «Извините ребята, но все, о чем мы до сих пор говорили, это неправда». И перешел к теории квантов.

Возникает вопрос, зачем время терять? Перепрыгнув через тупик «ультрафиолетовой катастрофы», куда неизбежно заводит волновая теория света, мы сразу начнем с устройства атома. Надеемся, свет появится в конце тоннеля.

Согласно теории Резерфорда, атом любого вещества состоит из ядра с положительно заряженными протонами, вокруг которого вращаются отрицательно заряженные электроны. Простейшим из атомов является атом водорода. Он содержит один протон и один электрон. Возникает вопрос, как мог образоваться такой атом? Ученые утверждают, что на заре времен, сразу после Большого взрыва, атомов не существовало. Вместо них в вакууме клубилась первичная плазма. Так называют электронно-протонный газ, в котором частицы носятся с огромными скоростями. По мере расширения Вселенной скорости частиц уменьшались, пока энергия электронов не сравнялась с энергией кулоновского притяжения.

Представим, что электрон пролетает мимо протона. Известно, масса протона почти в 2000 раз больше массы электрона. Если скорость электрона невелика, массивный протон захватывает легкий электрон и заставляет вращаться вокруг благодаря силе кулоновского притяжения: F = -e2/4πε0r2 (46.1). Простейшей из орбит является окружность. Попробуем вычислить ее радиус r. Обозначим скорость электрона через v, тогда его кинетическая энергия равна: Ек = mv2/2 (46.2), где m – масса электрона. Но электрон в поле протона имеет еще и потенциальную энергию Ep = Fr (46.3). Подставляя (46.1) в (46.3), получим: Ep = -e2/4πε0r (46.4). Знак минус указывает, что потенциальная энергия электрона внутри атома отрицательна. Выразим кинетическую энергию электрона через параметры кулоновского поля. Мы знаем, что центростремительная сила при движении по окружности равна: Fцс = ma = mv2/r (46.5). В нашем случае это сила связи F = e2/4πε0r2 (46.6). Приравняв (46.5) и (46.6), получим: mv2/r = e2/4πε0r2, или mv2 = e2/4πε0r, или mv2/2 = e2/8πε0r = Ek (46.7). Знак плюс в (46.7) означает, что кинетическая энергия положительна. Сложив (46.7) и (46.4), мы получаем полную энергию электрона в атоме: E = e2/8πε0r – e2/4πε0r = -e2/8πε0r (46.8). Знак минус в (46.8) указывает, что полная энергия электрона в атоме отрицательна. Таким образом, радиус орбиты электрона зависит от его полной энергии: r = e2/8πε0E (46.9). Знак минус не пишем, так как радиус орбиты не может быть отрицательным. Заметим, мы вынуждены жонглировать знаками «плюс» и «минус» потому, что силе притяжения в законе Кулона принято приписывать знак минус, а силе притяжения в законе тяготения Ньютона – знак плюс. Это тоже своего рода традиция.

Из уравнения (46.8) следует, что при уменьшении радиуса орбиты энергия электрона, с учетом знака, тоже уменьшается. В глубоком космосе, при абсолютном нуле, электрон в атоме водорода имеет минимальную энергию. Это значит, что он вращается по орбите с минимальным радиусом. Можно предположить, что до рождения звезд весь водород в нашей Вселенной находился в таком состоянии.

Представим, в откачанную от воздуха колбу впустили немного атомарного водорода и закрыли. Кто-то скажет, что атомы водорода легко связываются в пары, образуя молекулы. Это верно, но молекулу водорода так же легко можно разложить на атомы. Нас интересует именно атомарный газ водорода. Если пропускать через атомарный водород электрические разряды, газ засветится красновато-оранжевым цветом. Что происходит с атомом водорода? Часть энергии генератора, очевидно, передается электрону через электрическое поле. С увеличением энергии электрона радиус его орбиты увеличивается. Такой атом называют возбужденным. Известно, любая система стремится избавиться от излишка энергии. В перерывах между разрядами электрон излучает излишек энергии в виде короткого импульса энергии и возвращается в исходное состояние. Измерения показывают, что процесс излучения занимает всего 10-8 с. Это немного.

Излученный электроном излишек энергии принято называть квантом. Очевидно, квант имеет электрическую природу, так как он передался электрону от электроискрового генератора через электрическое поле. Кванты, которые человек может видеть, называют фотонами. Атомы водорода излучают фотоны нескольких видов. Одни видны как вспышки красного цвета, другие – как синего. Если искры пропускать достаточно часто, отдельные вспышки сливаются в непрерывное свечение. Человек может видеть фотоны разных цветов, от красного до фиолетового. Возбужденный атом водорода может излучать также и невидимые кванты.

 

Разрешенные орбиты

 

В § 46 выяснилось, что с увеличением энергии радиус орбиты электрона возрастает. Возникает вопрос, изменяются ли энергия и радиус непрерывно, или некоторые их значения запрещены? Вспомним, в кристаллах электроны, связанные с атомами, имеют отрицательную энергию, а свободные – положительную. Между ними существует зона запрещенных энергий. Возможно, для электрона в атоме водорода какие-то значения энергии тоже запрещены? Ответ может дать только опыт.

Если внутрь нашей колбы поместить плоский конденсатор и соединить с генератором постоянного напряжения, получится встроенный источник электрического поля. Начнем постепенно увеличивать напряжение генератора. В определенный момент амперметр покажет скачок тока, который вскоре упадет до нуля. Что же случилось? Мы знаем, что нейтральный газ не проводит ток. Зато известно, что плазма хорошо проводит ток. Очевидно, как только напряжение достигло величины, достаточной для отрыва электрона от ядра, атомы водорода начали распадаться на электроны и протоны. Такой процесс называют ионизацией, так как нейтральный атом превращается в ион. Протоны и электроны начинают перемещаться к пластинам конденсатора, создавая кратковременный ток (плоский конденсатор удобен тем, что он создает однородное электрическое поле, которое легко измерять). В результате опытов, проведенных в различных условиях ионизации, выяснилось следующее.

При сверхнизкой температуре ионизация атома происходит при напряжении генератора U, равном 13.6 В (для удобства будем округлять до десятых долей вольта). До этого ток отсутствует, газ остается нейтральным. При нормальной температуре ионизация происходит дважды: при U = 13.6 и U =3.4 (В). При высокой температуре ионизация возникает трижды: при U = 13.6, 3.4 и 1.5 (В). В горячем газе ионизация происходит четырежды: при U = 13.6, 3.4, 1.5 и 0.85 (В). Наконец, в раскаленном газе ионизация возникает пять раз: при напряжении U, равном: 13.6, 3.4, 1.5, 0.85 и 0.5 (В) (47.1). Попробуем объяснить полученные результаты.

Вспомним, что при движении заряда q в поле совершается работа А = q U (47.2). Заменяя в (47.2) q на заряд электрона e, получим: А = e U (47.3). Очевидно, работа (47.3), необходимая для ионизации атома, численно равна энергии электрона на данной орбите. Значит, значения напряжения из ряда (47.1) соответствуют ионизации атомов водорода при отрыве электронов с пяти различных орбит.

Для удобства пронумеруем их цифрами от 1 до 5.

При сверхнизкой температуре электроны в атомах находятся только на орбитах № 1. При этом их энергия равна, согласно (47.1): Е1 = -13.6 эВ. Как только напряжение генератора достигает 13.6 В, электроны отрываются от протонов и между пластинами конденсатора появляется облачко плазмы. Амперметр сначала показывает ток, но после разделения и поглощения заряженных частиц обкладками конденсатора ток падает до нуля.

При нормальной температуре атомы водорода двигаются быстрее и могут соударяться между собой. Если энергия удара достаточна велика, один из электронов может перескочить на орбиту № 2, где его энергия, очевидно, равна Е2 = -3.4 эВ (см. 47.1). Таким образом, при нормальной температуре в колбе имеются два вида атомов. В одних электроны находятся на орбитах № 1, в других – на орбитах № 2. Электроны сначала отрываются от орбит № 2, когда напряжение генератора равно U = 3.4 В. В этот момент возникает первый скачок тока. Затем, когда напряжение генератора поднимается до величины 13.6 В, начинается ионизация атомов, в которых электроны находятся на орбитах № 1. В этот момент возникает второй скачок тока, который регистрирует амперметр.

Легко представить, что при дальнейшем повышении температуры в колбе появляются атомы, где электроны могут вращаться по орбитам № 3. Это значит, что в колбе одновременно присутствуют атомы трех видов. В одних электроны находятся на орбитах № 1, в других – на орбитах № 2. В атомах третьего вида электроны вращаются по орбитам № 3, где их энергия равна -1.5 (эВ). В этих условиях ионизация начинается с орбиты № 3, при напряжении генератора, равном 1.5 В.

В газе, температуру которого можно назвать очень горячей, одновременно могут быть атомы четырех видов. Поэтому здесь ионизация происходит четыре раза, начиная с напряжения генератора U = 0.85 В. Наконец, в раскаленном газе могут быть атомы пяти видов. В разных атомах электроны могут занимать места на разных орбитах, с первой по пятую. Поэтому в раскаленном газе ионизация происходит пять раз, начиная с самой верхней, пятой орбиты, при напряжении генератора всего U = 0.5 В.

Из опыта следует, что кроме данных (47.1) других значений напряжения ионизации нет. Это означает, что электроны в атоме водорода могут вращаться только по определенным орбитам, где они имеют энергию, соответствующую данным (47.1). Других орбит в атоме водорода нет. При еще более высоких температурах электроны могут располагаться на орбитах № 6, № 7 и так далее. Отметим, чем больше номера орбит, тем меньше расстояние между ними. Так, 10-я и 11-я орбиты энергетически различаются на 0.1 эВ. Это совсем немного. Правда, чтобы «загнать» электрон на орбиту № 11 потребуются звездные температуры. На Земле осуществить это непросто. Поэтому мы пока ограничимся полученными результатами и попробуем вычислить радиусы первых пяти разрешенных орбит, используя уравнение (46.9).

Для упрощения расчетов заменим Е на eU, а U возьмем из опытных данных (47.1).Тогда для радиуса r имеем: r = e2/8πε0eU, или r = e/8πε0U (47.4). Подставляя значения U в вольтах, получаем радиус ближайшей к ядру первой орбиты: r1 = 1.602х10-19/8х3.14х8.85х10-12 х13.6 = 0.0529 (нм). Этот радиус называют «первым боровским» в честь Н. Бора, который раньше других предположил, что для электрона в атоме водорода разрешены не любые орбиты. Для следующих орбит имеем соответственно:

r2 = 1.602х10-19/8х3.14х8.85х10-12х3.4 = 0.213 (нм), r3 = 1.602х10-19/8х3.14х8.85х10-12 х1.5 = 0.477 (нм), r4 = 1.602х10-19/8х3.14х8.85х10-12 х0.85 = 0.849 (нм), r5 = 1.602х10-19/8х3.14х8.85х10-12 х0.5 = 1.334 (нм).

Выясняется, что электрон в атоме водорода может вращаться только по некоторым разрешенным орбитам, радиусы которых можно вычислить по формуле (47.4). Таким образом, спектр энергии электрона в атоме водорода состоит из дискретного набора чисел. Этим газ отличается от твердого вещества. В кристаллах и жидкостях энергия электрона в разрешенной зоне может изменяться непрерывно. Теоретически, по меньшей мере.

 

Энергия кванта

 

Электрон, вращающийся на орбите № 1, пребывает на низшем энергетическом уровне, так как он обладает минимально возможной энергией, равной – 13.6 эВ. Такой электрон не может излучать энергию, как не может разуться босоногий. Если внешнее поле отсутствует, как например, в глубоком космосе, то электрон на этом уровне может оставаться сколько угодно, хоть миллиард лет. По этой причине орбиту № 1 принято называть стационарной. Очевидно, чтобы излучить энергию, сначала ее надо получить. Например, от Солнца. Если электрон поглотит солнечный квант с энергией 10.2 эВ, он окажется на втором энергетическом уровне (орбита № 2), где его энергия равна – 3.4 эВ. Это легко проверить: Е2 – Е1 = –13.6 + 10.2 = – 3.4 (эВ) (48.1).

В возбужденном состоянии электрон будет недолго. Через долю секунды он излучит квант с энергией 10.2 эВ и вернется обратно на первый уровень. Возникает вопрос: может ли электрон захватить любой квант? Очевидно, нет. Представим разрешенные уровни энергии в виде ступенек лестницы. Поднимаясь по лестнице, мы должны ставить ногу точно на ступеньку, иначе рискуем оступиться и упасть. Так и электрон. Чтобы очутиться на более высокой орбите, он должен «поглотить» квант с энергией, в точности равной разности между конечным и исходным уровнями. Ведь других промежуточных орбит в атоме не существует.

Правда, могут быть варианты. Например, если электрон на орбите № 1 захватит квант с энергией, равной 12.1 эВ, то он перепрыгнет на орбиту № 3, минуя орбиту № 2. Это как если человек бежит вверх, перепрыгивая через ступеньки.

В принципе, электрон может оставаться на высшем уровне достаточно долго. Это случается, когда окружающее пространство заполнено излучением и электрону трудно отдать излишек энергии. Например, атом находится внутри раскаленной солнечной короны. Возможно, электрон излучает квант в пространство, но он тут же получает его обратно. В этом смысле все разрешенные орбиты тоже можно называть стационарными, так как, находясь на них, электрон сохраняет энергию. Это противоречит теории Максвелла, исходя из которой, электрон при непрерывном вращении должен постоянно излучать энергию, уменьшая радиус вращения, пока не упадет на ядро. Это не соответствует практике: ведь атомы стабильны. Очевидно, электрон излучает излишек энергии только при переходе с высшего уровня на низший. Как он это делает – тайна века! Фейнман говорил, что самая большая загадка электрона в том, что он имеет массу покоя. Действительно, свободный электрон имеет массу, это признак частицы. Но, находясь внутри атома, он легко поглощает и генерирует фотоны, которые не имеют массы покоя. Здесь есть о чем подумать.

Мы уже говорили, что электрон излучает квант в течение 10-8 с независимо от величины его энергии. Это интересно. Допустим, электрон перескочил с уровня № 3 на № 2. В этом случае энергия кванта составит: Е3 – Е2 = -1.5 – (-3.4) = 1.9 (эВ) (48.2). Получается, что при переходе 2→1 энергия излучения в пять раз больше, чем при переходе 3→2, хотя время излучения одинаково. Это возможно, если скорость излучения в первом случае больше. Но скорость излучения есть энергия, деленная на время. Выходит, энергия кванта пропорциональна параметру, который измеряется в с-1.

Такую размерность имеет частота, которую в квантовой физике принято обозначать как ν.

Обозначим энергию излученного кванта как εmn = Em – En (48.3), где m, n – номера разрешенных уровней (m>n). Эта энергия пропорциональна некоей величине, измеряемой в с-1, как частота ν. Но мы не можем просто написать: ε=ν. Энергия измеряется в джоулях, а частота в герцах. Нужен переходный коэффициент. Обозначим его h. Тогда: ε = hν (48.4). Уравнение (48.4) определяет энергию кванта излучения. Величину h называют постоянной Планка. Интересно выяснить ее физический смысл. Перепишем (48.4) в виде h = ε/ν (48.5). Из уравнения (48.5) следует, что постоянная Планка численно равна энергии кванта при ν=1 с-1. Очевидно, в микромире 1 Гц это частота, которой соответствует минимальный квант энергии. Постоянную Планка h еще называют квантом действия. Расчеты показывают, что величина h = 4.114х10-15 эВ с. Это действительно очень маленькая величина. Подчеркнем, что в теории квантов ν – это просто число, на которое нужно умножить h, чтобы получить энергию кванта.

Зная энергию кванта, легко вычислить его частоту. Перепишем (48.4) в виде: ν = ε21/h (3.6). Тогда для кванта ε21 = 10.2 (эВ) имеем: ν = 10.2/4.14х10-15 = 2.47х1015 (Гц). Это большая величина, если под ν понимать частоту колебаний поля. Из теории Максвелла следует существование электромагнитной волны, которая перемещается со скоростью света. Герц опытами доказал, что такие волны существуют, по крайней мере, в диапазоне радиочастот. Предположим, что квант излучения есть фрагмент этой волны, причем частота кванта совпадает с частотой волны. Вычислим длину этого фрагмента. Если скорость кванта равна скорости света с = 2.99х108 м/с, а время излучения равно 10-8 с, то расстояние между началом и концом кванта равно: L = 2.99х108 х10-8 = 2.99 (м). По сравнению с диаметром орбиты электрона эти три метра огромная величина, почти бесконечность. В таком случае при изучении квантов мы можем использовать некоторые методы теории Максвелла-Герца, которая описывает идеальные бесконечные электромагнитные волны света.

Световые волны, согласно Герцу, занимают диапазон от 380 нм (фиолетовый край) до 760 нм (красный край). Попробуем вычислить «длину» волны для кванта с энергией ε21 = 10.2 эВ. Согласно теории волн: λ = сТ = с/ν = 2.99х108/2.47х10-15 = 1.21х10-7 = 121 (нм). Выходит, квант с длиной волны 121 нм попадает за фиолетовый край, видеть его нельзя. Такой свет называют ультрафиолетовым. Кванты от переходов электрона с еще более высоких уровней на первый имеют еще большую частоту и, следовательно, еще меньшую длину волны. Значит, все они находятся в ультрафиолетовой зоне и тоже невидимы.

Возникает вопрос, какие кванты из спектра водорода может видеть человек? Для этого надо вычислить «длину» волны, соответствующую квантовому переходу, и сравнить её с диапазоном Герца. Попробуем вычислить λ для кванта, излучаемого при переходе с 3-го уровня на 2-й: ε32 = – 1.5 – (– 3.4) = 1.9 (эВ). Соответствующая частота ν32 = 1.9/4.14х10-15 = 0.45х1015 (Гц), тогда λ32 = 2.99х108/0.45х10-15 = 664 (нм). В справочнике по оптике находим, что эта длина волны соответствует красному цвету. Аналогичные расчеты дают: для кванта ε42 длина волны λ42 = 613 нм, что соответствует оранжевому цвету, для кванта ε52 длина волны λ52 = 433 нм, что соответствует темно-синему цвету. Из справочника известно, что атом водорода также испускает излучение с длиной волны 410 нм, имеющее фиолетовый цвет. Очевидно, оно соответствует кванту ε62. Следующие кванты серии εm2 уже попадают в ультрафиолетовую область. С другой стороны, расчеты показывают, что при переходе электрона с четвертой орбиты на третью кванту ε43 соответствует длина волны 1880 нм. Это лежит за инфракрасной границей. Кванту ε53 отвечает длина волны 1278 нм, это тоже в инфракрасной области.

 

 

Глава 7. Свет

 

Оптические спектры

 

Оптическим спектром называют картинку, которая получается при разложении света на составные части. Для измерения спектров используют приборы спектрометры. Спектры дают истинную информацию о строении материи. Если теория света противоречит результатам спектрометрии, значит, она неверна.

Картинку солнечного спектра получить нетрудно. Закроем окно старой черной шторой, в которой проделаем отверстие диаметром около 1 см (старую штору не жалко). Солнечный луч впустим через отверстие и направим на боковую грань треугольной стеклянной призмы, поставленную на её основание. Параллельно другой грани призмы установим белый экран. При определенном угле падения невидимого луча света (если в комнате нет пыли) световое пятнышко на экране растянется в радужную полоску шириной 1 см и длиной около 5 см. Это и есть солнечный спектр, известный со времен Ньютона. Если призма стоит острым углом влево, то цвета в полоске располагаются слева направо в следующем порядке: красный, оранжевый, желтый и т. д., до фиолетового. Согласно теории Максвелла-Герца, каждому оттенку цвета в полоске соответствует электромагнитная волна определенной частоты (или длины волны). Такую волну называют монохроматической (одноцветной) в том смысле, что одна частота отвечает за один оттенок цвета. Считается, что Солнце излучает электромагнитные волны всех частот. Поэтому в солнечном спектре оттенки цветов непрерывно переходят один в другой.

Изменим опыт: между призмой и экраном поставим колбу с атомарным водородом. Мы увидим, что в солнечном спектре места некоторых цветов заняли вертикальные черные линии. Фраунгофер первым догадался, что это «тени» от атомов водорода и назвал их «линиями» поглощения водорода. Заметим, термин «линия поглощения» означает не геометрическую линию, а определенную частоту. Так, если отверстие в шторе уменьшить до 1 мм, радужная полоска на экране сузится в черту, а линии поглощения станут черными точками. Если в солнечном спектре в данном месте появилась черная линия, значит, фотоны с данной частотой поглощены атомами водорода (вот откуда термин «поглощение»).

Кирхгоф доказал, что водород поглощает только те линии, какие может излучать сам. Бальмер показал, что расположение линий поглощения в спектре водорода подчиняется правилу: ν = R(1/4 – 1/m2) (49.1), где ν – частота по Герцу, R – постоянная Ридберга: R=3.29*1015 с-1. Учитывая, что 4 = 22, формулу (49.1) можно переписать в виде: ν = R(1/n2 – 1/m2) (49.2). Тогда линии Бальмера (серия линий) получаются из (49.2) при n = 2. При других значениях n получаются, очевидно, другие серии линий поглощения. Действительно, когда изобрели ультрафиолетовые спектрометры, Лайман открыл в спектре водорода серию линий, отвечающих уравнению (49.2) при n = 1. Её назвали серией Лаймана.

Докажем, что линии поглощения спектра водорода соответствуют квантам излучения атома водорода. Для первой линии серии Лаймана (n=1, m=2) частота ν = R(1/12– 1/22)=3R/4. Подставляя R, получим: ν =3.29*0.75*1015=2.47*1015 (с-1). Энергия кванта равна hν. Подставим значения: hν = 4.136*10-15*2.47х1015 = 10.2 (эВ). Это полностью совпадает с энергией излучения при переходе электрона со второго уровня на первый: E2—E1= – 3.4 – (-13.6) = 10.2 (эВ). Для второй линии расчет даёт 12.1 эВ, что совпадает с энергией излучения водорода при переходе с 3-го уровня на 1-й: E3 – E1= – 1.5 – (-13.6) = 12.1 (эВ). Следовательно, правило Кирхгофа подтверждает теорию квантов.

Задача. Предлагаем читателю вычислить энергию поглощения для третьей линии Лаймана (n=1, m=4) и сравнить её с энергией излучения ε = E4 – E1 из данных (47.1).

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: