Разработка коллоидной теории и кинетики протоплазматических процессов

 

Созданное в физической химии учение о коллоидных растворах также быстро становится достоянием биологии. В нем многие увидели ключ к разгадке структуры протоплазмы.

Вокруг вопроса о строении протоплазмы в начале XX в. возникла оживленная дискуссия. Гистолог В. Флемминг утверждал, что протоплазме свойственна фибриллярная структура, а Р. Альтман в результате исследований тех же объектов пришел к выводу, что протоплазма построена из микроскопических гранул. О. Бючли, пользовавшийся методом прижизненных наблюдений, придерживался мнения, что протоплазма представляет собой жидкий коллоид и что коллоидные частицы белка окружены слоем липидов, играющих роль эмульгатора. Этот спор сыграл положительную роль, так как в итоге привел к твердому заключению, что протоплазма является коллоидальной системой. Это в свою очередь послужило толчком к исследованию различных свойств биоколлоидов клетки.

Выдающееся значение в этом направлении имела работа русского исследователя В.В. Лепешкина «Коллоидное строение протоплазмы» (1922). Лепешкин пришел к выводу, что элементом коллоидальной системы являются комплексы липидов с белками, которые он назвал витаидами. Такие комплексы непрочны и при повреждающих воздействиях легко разрушаются. Идея Лепешкина оказалась плодотворной. Она вызвала массу исследований, в которых было окончательно доказано, что белки находятся в протоплазме в состоянии липопротеиновых комплексов.

В дальнейшем исследования в области коллоидной химии протоплазмы выявили ряд особенностей, характерных для живых клеток, прежде всего, вязкость протоплазмы. Для измерения этого важнейшего показателя коллоидного состояния были разработаны специальные биофизические методы, которые позволили производить эти измерения в пределах одной клетки с большой точностью (наблюдение за оседанием тяжелых частиц и кинорегистрация броуновского движения частиц).

Большой вклад в изучение вязкости протоплазмы внесла школа Л. Гейльбруна. Исследователями этой школы было установлено, что изменения вязкости связаны с физиологическим состоянием клетки. Так, при всяком переходе из состояния покоя к работе, например при проведении возбуждения, происходит повышение вязкости протоплазмы вплоть до ее превращения в гель. Гейльбрун (1928) доказывал, что увеличение вязкости связано с тем, что возникающая при возбуждении реакция приводит к высвобождению связанного кальция, который вызывает обратимую коагуляцию белков. В дальнейшем в опытах на крупных растительных клетках было установлено, что при распределении возбуждения «застудневание» наблюдается там, где возникает электрическая активность, и именно в зоне такого «застудневания» происходят активные химические процессы. Ионно‑коллоидное направление особенно интенсивно развивалось в Германии, где ведущую роль играла школа профессора Р. Гебера в Киле (10‑20‑е годы), известного своими исследованиями по влиянию кислотности на взаимодействие ионов солей с биоколлоидами. Он же впервые установил высокую электропроводность живых клеток для токов высокой частоты, показав, что она соответствует количеству находящихся в клетках свободных ионов солей. Эта электропроводность получила название внутренней электропроводности. Фундаментальная монография «Физическая химия клетки и ткани» (1926) Гебера долгое время служила для биофизиков настольной книгой.

Еще в конце XIX в. в физической химии возникло учение о скоростях развития химических реакций (химическая кинетика). Работы Я. Вант‑Гоффа (Нобелевская премия, 1901), установившего зависимость между скоростью химических реакций и температурой, служили основой, на которой аналогичное направление развивалось и в биофизике. Изучение температурных коэффициентов физиологических реакций сразу же обнаружило, что скорость протекания этих реакций увеличивается с повышением температуры. Аррениус углубил кинетические представления и ввел понятие энергии активации как характерного показателя реакционной активности. Его известное уравнение открыло возможность определять энергию активации на Живых неповрежденных клетках и тем самым описывать особенности реакций, протекающих в организмах. Совместно с микробиологами Аррениус пытался определять кинетические параметры иммунологических реакций у бактерий. Его книга «Количественные законы биологической химии» (1926) послужила введением в биологическую кинетику. Впоследствии появилось много исследований по определению физико‑химических параметров реакций, протекающих при различных биологических процессах (сокращение сердца, клеточное деление, поражение повреждающими агентами и т. д.).

Температурные характеристики Аррениуса стали использовать для вскрытия механизмов и объективной оценки биологической активности химических соединений, например дезинфицирующего эффекта на бактериях (К. Бирштейн).

Существенный вклад в теоретические представления о физических особенностях протоплазмы внес американский исследователь В. Крозье в 20‑х годах XX в. Чтобы объяснить парадоксальный факт, что сложные биологические системы дают простые кинетические кривые, он разработал теорию «узкого места», согласно которой при снятии температурных характеристик со сложной системы последовательных реакций общий ответ соответствует только одной, наиболее медленной из протекающих реакций. Эта закономерность была в дальнейшем подтверждена большим количеством экспериментальных исследований.

 

 

Работы Ж. Лёба.

 

Крупную научную и организационную роль в формировании биофизики и разработке ее методологической основы сыграл Ж. Лёб и его школа. Лёб неуклонно проводил идею физико‑химической целостности биологических объектов, которая нашла отражение в его двух основных трудах – «Динамика живого вещества» (1905) и «Организм как целое с физико‑химической точки зрения» (1926) – и легла в основу методологии новой науки. Возникло направление, которое начали называть физико‑химической биологией. В основанном Лёбом в Америке «Журнале общей физиологии» начали публиковаться работы биофизического характера. Лёб отмечал близость новой дисциплины к физиологии, поскольку в ее основные задачи входило познание физико‑химических механизмов элементарных физиологических функций – возбуждения, клеточного деления, роста, механической работы, формообразования, реакции организмов на воздействие внешних факторов (температуру, свет, электрическое поле) в условиях нормального физиологического состояния. Новое направление примыкало также к биохимии, и их общей основой было изучение химического строения живой материи и протекающих в ней физико‑химических процессов.

Лёбу и его школе принадлежит ряд крупных открытий, продемонстрировавших продуктивность физико‑химического подхода к анализу жизненных явлений. Им была создана теория антагонизма ионов различной валентности и показана роль антагонизма в биологических процессах. Настоящей сенсацией – и не только в научном мире – явились его исследования по дроблению яиц. Он показал, что этот процесс, вызываемый проникновением сперматозоидов, можно вызывать и химическими агентами (искусственный партеногенез). Лёб установил также особую роль ионов водорода в поведении живого белка, создал и развил теорию элементарных актов ориентировки по отношению к свету, силе тяжести, электрическому полю (таксисы и тропизмы) на основе физико‑химических реакций. В 1930 г. он основал на морской биологической станции Голд Спринг Харбор постоянный симпозиум по количественной биологии, на котором ежегодно обсуждались вопросы биофизики. В последний период жизни Лёб работал в Рокфеллеровском институте и оказывал сильное влияние на направление его исследований. Ему удалось увлечь своими идеями ботаника‑физиолога У. Остергоута, который продолжал развивать его представления о роли ионов в развитии растений. Лёб впервые применил метод электропроводности к анализу ионных процессов в живых клетках и установил наличие характерных изменений электропроводности при возбуждении и повреждении клеток. Эти работы показали возможность оценивать по электропроводности физико‑химическое состояние клеток и их жизнеспособность. Изучение пассивных электрических явлений составило самостоятельную ветвь биофизики.

 

 

Развитие физико‑химических исследований в медицине.

 

Первые успехи физико‑химических исследований в биологии, установивших роль солевых и водородных ионов и ионного антагонизма в поддержании водно‑осмотического равновесия в живых клетках, обратили на себя внимание медиков, и уже в первом десятилетии XX в. были предприняты попытки использовать эти открытия для понимания патологических процессов. Клинические исследования показывали, что при отеках, нефритах, сердечно‑сосудистых и нервных заболеваниях наблюдаются ионные сдвиги в крови. На основании экспериментальных данных Г. Шаде (1910) построил физико‑химическую теорию воспалительного процесса. Согласно его представлениям, воспаление есть результат нарушения равновесия между водородными и гидроксильными ионами, приводящего к изменению коллоидного состояния протоплазмы. Он же детально выяснил роль коллоидного осмотического давления в поддержании водного равновесия между кровяным руслом и тканями организма и проанализировал условия, приводящие к возникновению патологических состояний.

Проникновение биофизики в медицину не ограничивалось работами школы Шаде. Почти одновременно ширится круг исследований по проблеме наркоза. Еще в 1899 г. Е. Овертон и Р. Майер независимо друг от друга обнаружили, что наркотический эффект, вызываемый различными соединениями, пропорционален их растворимости в липоидных веществах. Через 10 лет Ж. Траубе доказал, что между силой наркотического действия и физико‑химическим явлением – поверхностным натяжением – существует определенная количественная зависимость. Классическая теория Траубе, включавшая в себя липоидную теорию Овертона, сохранила все свое значение до настоящего времени, хотя впоследствии в нее и были введены некоторые поправки.

Интерес к так называемым электрокинетическим явлениям обнаружился в медицине после того, как было установлено, что на поверхности клеток бактерий, эритроцитов и лейкоцитов существует отрицательный электрический заряд (дзета потенциал), меняющийся на положительный только после гибели клеток. Многочисленными исследованиями было установлено, что этот потенциал определяет стабильность суспензий бактерий и препятствует слипанию эритроцитов в крови. Возникли многочисленные и небезуспешные попытки использовать величину потенциала эритроцитов в диагностических целях (X. Абрамсон и сотрудники).

В 40‑х годах XX в. Абрамсон выдвинул интересную биофизическую теорию механизма миграции лейкоцитов к воспалительным участкам. Он обратил внимание на то, что на границе кровеносных сосудов и тканей, а также на границах воспалительного очага могут возникать вследствие неравномерного распределения ионов значительные градиенты электрических потенциалов, которые активируют направленное движение заряженных лейкоцитов.

Значение этих исследований выходило за рамки частного вопроса – миграции лейкоцитов в воспалительный очаг: возникал общий принципиально важный вопрос о роли тканевых и внутриклеточных потенциалов в биологическом транспорте веществ.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: