Генетический контроль синтеза белков

 

Важнейшим достижением молекулярной генетики было выяснение цепи реакций, обеспечивающих передачу информации от ДНК к белку. Цитохимически было доказано, что ДНК локализована главным образом в ядре клеток. Синтез же белка, как показали исследования начала 50‑х годов, происходит в основном в цитоплазме (Ж. Браше, Б.В. Кедровский). Каким образом ядро может осуществлять контроль за синтезом белка в цитоплазме? В настоящее время эта проблема полностью решена.

Еще в 30‑х годах XX в. было установлено, что в клетках наряду с ДНК содержится второй класс нуклеиновых кислот – рибонуклеиновые кислоты (РНК). В отличие от ДНК в РНК вместо сахара дезоксирибозы содержится также пятичленный углевод – рибоза, а одно из пиримидиновых оснований – тимин – заменено на урацил. Кроме того, было показано, что РНК, как правило, не двуспиральна, а однонитчата.

Уже в опытах Браше (1942) и Кедровского (1951), а затем в обширных экспериментах ряда лабораторий (Т. Касперсон, А. Мирский, В. Олфри, П. Замечник и др.) было показано, что интенсивный синтез белка происходит в тех участках клетки, где сосредоточено много РНК. Методы цитохимического анализа и электронной микроскопии позволили в начале 60‑х годов четко подтвердить этот вывод. Само собой напрашивалось предположение, что именно РНК, близкая по своему составу к ДНК, переносит информаций с ДНК на белок (см. также главу 23). Это предположение, высказывавшееся в устной и печатной форме многими учеными (Ф. Крик, С. Шпигельман, А.Н. Белозерский и А.С. Спирин и др.), было воплощено в четкую гипотезу лишь в 1961 г. Ф. Жакобом и Ж. Моно. Они предсказали свойства такой РНК (высокий молекулярный вес, сравнимый с весом участка ДНК, содержащего один ген; комлементарность к генам; быстрый синтез и высокая метаболическая активность), назвав ее «информационной РНК». После работ Жакоба и Моно в кратчайший срок (в том же 1961 г.) в ряде американских и японских лабораторий было доказано существование информационной РНК, или сокращенно иРНК (Ф. Гро, С. Шпигельман и многие другие). Р.Б. Хесин‑Лурье и М.Ф. Шемякин (1962) в СССР впервые показали, что при размножении фага Т2 в бактериальной клетке синтезируются различные по времени иРНК (так называемые «ранние» и «поздние»). В 1964–1965 гг. Г.П. Георгиев и одновременно с ним А.С. Спирин развили представление о том, что в клетках высших организмов существуют особые формы «запасания» считанной с ДНК генетической информации в форме так назывемых «информоферов», или «информосом». В 1965 г. Спирин и Георгиев экспериментально доказали существование этих структур в клетках.

Несколько ранее открытия и изучения свойств иРНК было обнаружено существование в клетках другого типа РНК, получивших название «транспортные РНК» [М. Хогланд, Д. Стефенсон и другие (лаборатория П. Замечника, США); Огата, Нахара и Морито (Япония), 1957]. Основное затруднение в понимании механизма передачи генетической информации от ДНК к белку заключалось в том, что прямой синтез белка на РНК был невозможен из‑за чисто стерических несоответствий: молекулы аминокислот по своей величине не совпадают с размерами кодонов и надо было искать какой‑то иной способ передачи команд от ДНК относительно порядка выстраивания аминокислот в строящейся молекуле белка. Ф. Крик (1954) предложил так называемую адапторную гипотезу, согласно которой функцию перевода языка нуклеиновых кислот на язык белков должны выполнять особые молекулы нуклеиновых кислот – адапторные РНК. Это предположение блестяще подтвердилось. Было выделено более 20 типов низкомолекулярных РНК, которые сначала были названы растворимыми, а затем переименованы в транспортные РНК (тРНК).

Выяснилось, что молекулы тРНК содержат два активных центра. На одном конце тРНК имеется одинаковая для всех изученных сортов тРНК последовательность нуклеотидов, к цепи которых прикрепляется молекула аминокислоты. Прикрепление осуществляется при помощи особых активирующих ферментов, число которых также близко к 20 (по числу типов аминокислот). В результате образуется комплекс аминоацил‑тРНК. Второй активный центр в аминоацил‑тРНК остается свободным, В этом центре содержится так называемый антикодон, т. е. последовательность оснований, комплементарная к кодону в иРНК. Таким образом, спаривание антикодона аминоацилированной тРНК с кодоном иРНК приведет к тому, что напротив данного кодона поместится соответствующая аминокислота.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: