Задачи вторичного источника питания

Что такое трансформатор

 

Начиная с 1830-х годов, трансформаторы стали важным компонентом в электрических и электронных схемах. И, несмотря на то, что новые передовые технологии в области электроники позволили снизить потребность в трансформаторах, они по-прежнему востребованы в различных устройствах.

Работа трансформатора основана на принципах электромагнетизма, и это позволяет уменьшать или увеличивать напряжения переменного тока. Опыты Майкла Фарадея в 19 веке показали, что изменения тока в проводнике (например, первичная обмотка трансформатора) влияет на изменение магнитного поля вокруг этого проводника. Если другой проводник (вторичная обмотка) находится непосредственно в области меняющегося магнитного поля, то в нем будет происходить наводка напряжения.

Трансформаторами в электротехнике называют такие электротехнические устройства, в которых электрическая энергия переменного тока от одной неподвижной катушки из проводника передается другой неподвижной же катушке из проводника, не связанной с первой электрически.

 

ТРАНСФОРМАТОРНЫЙ (СЕТЕВОЙ) ИСТОЧНИК ПИТАНИЯ

 

Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора или автотрансформатора, у которого первичная обмотка рассчитана на сетевое напряжение. Затем устанавливается выпрямитель, преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырёх диодов, образующих диодный мост (двухполупериодный выпрямитель). Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр, сглаживающий колебания(пульсации). Обычно он представляет собой просто конденсатор большой ёмкости.

Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков (варисторы), защиты от КЗ, стабилизаторы напряжения и тока.

 

Габариты трансформатора

 

Существует формула, несложно выводимая из базовых законов электротехники (и даже уравнений Максвелла): (1 / n) ~ f * S * B

где n - число витков на 1 вольт (в левой части формулы стоит ЭДС одного витка, которая есть по уравнению Максвелла производная от магнитного потока, поток есть нечто в виде sin (f * t), в производной f выносится за скобку),

f - частота переменного напряжения,

S - площадь сечения магнитопровода,

B - индукция магнитного поля в нем. Формула описывает амплитуду B, а не мгновенное значение.

 

Величина B на практике ограничена сверху возникновением гистерезиса в сердечнике, что приводит к потерям на перемагничивание и перегреву трансформатора.

Если принять, что f есть частота сети (50 Гц), то единственные два параметра, доступные для выбора при разработке трансформатора, есть S и n. На практике принята эвристика n = (от 55 до 70) / S в см2.

Увеличение S означает повышение габаритов и веса трансформатора. Если же идти по пути снижения S, то это означает повышение n, что в трансформаторе небольшого размера означает снижение сечения провода (иначе обмотка не поместится на сердечнике).

Увеличение n и снижение сечения означает сильное увеличение активного сопротивления обмотки. В маломощных трансформаторах, где ток через обмотку невелик, этим можно пренебречь, но с повышением мощности ток через обмотку растет и, при высоком сопротивлении обмотки, рассеивает на ней значительную тепловую мощность, что недопустимо.

Перечисленные выше соображения приводят к тому, что на частоте 50 Гц трансформатор большой (от десятков ватт) мощности может быть успешно реализован только как устройство большого габарита и веса (по пути повышения S и сечения провода со снижением n).

Потому в современных БП идут по другому пути, а именно по пути повышения f, т.е. переходу на импульсные блоки питания. Таковые блоки питания в разы легче (причем основная часть веса приходится на экранирующую клетку) и значительно меньше габаритами, чем классические. Кроме того, они не требовательны к входному напряжению и частоте.

 

Достоинства и недостатки

— Достоинства трансформаторных БП:

- Простота конструкции.

- Надёжность.

- Доступность элементной базы.

- Отсутствие создаваемых радиопомех (в отличие от импульсных, создающих помехи за счет гармонических составляющих).

— Недостатки трансформаторных БП.

- Большой вес и габариты, пропорционально мощности.

- Металлоёмкость.

Компромисс между снижением КПД и стабильностью выходного напряжения: для обеспечения стабильного напряжения требуется стабилизатор, вносящий дополнительные потери.

Слабая стойкость оборудования с таким БП к броскам напряжения и пропаданию нейтрали ведущей к образованию фазного напряжения (порядка 380...400 вольт) вместо линейного (220...230 вольт).

 

Задачи вторичного источника питания

 

Обеспечение передачи мощности – источник питания должен обеспечивать передачу заданной мощности с наименьшими потерями и соблюдением заданных характеристик на выходе без вреда для себя. Обычно мощность источника питания берут с некоторым запасом.

Преобразование формы напряжения – преобразование переменного напряжения в постоянное, и наоборот, а также преобразование частоты, формирование импульсов напряжения и т. д. Чаще всего необходимо преобразование переменного напряжения промышленной частоты в постоянное.

Преобразование величины напряжения – как повышение, так и понижение. Нередко необходим набор из нескольких напряжений различной величины для питания различных цепей.

Стабилизация – напряжение, ток и другие параметры на выходе источника питания должны лежать в определённых пределах, в зависимости от его назначения при влиянии большого количества дестабилизирующих факторов: изменения напряжения на входе, тока нагрузки и т. д. Чаще всего необходима стабилизация напряжения на нагрузке, однако иногда (например, для зарядки аккумуляторов) необходима стабилизация тока.

Защита – напряжение, или ток нагрузки в случае неисправности (например, короткого замыкания) каких-либо цепей может превысить допустимые пределы и вывести электроприбор, или сам источник питания из строя. Также во многих случаях требуется защита от прохождения тока по неправильному пути: например, прохождения тока через землю при прикосновении человека или постороннего предмета к токоведущим частям.

Гальваническая развязка цепей – одна из мер защиты от протекания тока по неверному пути.

Регулировка – в процессе эксплуатации может потребоваться изменение каких-либо параметров для обеспечения правильной работы электроприбора.

Управление – может включать регулировку, включение/отключение каких-либо цепей, или источника питания в целом. Может быть, как непосредственным (с помощью органов управления на корпусе устройства), так и дистанционным, а также программным (обеспечение включения/выключения, регулировка в заданное время или с наступлением каких-либо событий).

Контроль – отображение параметров на входе и на выходе источника питания, включения/выключения цепей, срабатывания защит. Также может быть непосредственным или дистанционным.

Чаще всего перед вторичными источниками питания стоит задача преобразования электроэнергии из сети переменного тока промышленной частоты (напр., в России – 220 В 50 Гц, в США – 120 В 60 Гц).

 




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: