Классификация режимов ЭЭС

Электроэнергетическая система состоит из элементов, которые можно разделить на три группы:

· основные (силовые) элементы — генерирующие агрегаты электростанций, преобразующие энергию воды или пара в электроэнергию; трансформаторы, автотрансформаторы, выпрямительные установки, преобразующие значения и вид тока и напряжения; линии электропередач (ЛЭП), передающие электроэнергию на расстояние; коммутирующая аппаратура (выключатели, разъединители), предназначенные для изменения схемы ЭЭС и отключения поврежденных элементов;

· измерительные элементы — трансформаторы тока и напряжения, предназначенные для подключения измерительных приборов, средств управления и регулирования;

· средства управления — релейная защита, регуляторы, автоматика, телемеханика, связь, обеспечивающие оперативное и автоматическое управление схемой и работой ЭЭС.

Состояние ЭЭС на заданный момент или отрезок времени называется режимом. Режим определяется составом включенных основных элементов ЭЭС и их загрузкой. Значения напряжений, мощностей и токов элементов, а также частоты, определяющие процесс производства, передачи, распределения и потребления электроэнергии, называются параметрами режима.

Если параметры режима неизменны во времени, то режим ЭЭС называется установившимся, если изменяются — то переходным.

Строго говоря, понятие установившегося режима в ЭЭС условное, так как в ней всегда существует переходный режим, вызванный малыми колебаниями нагрузки. Установившийся режим понимается в том смысле, что параметры режима генераторов электростанций и крупных подстанций практически постоянны во времени.

Основная задача энергосистемы — экономичное и надежное электроснабжение потребителей без перегрузок основных элементов ЭЭС и при обеспечении заданного качества электроэнергии. В этом смысле основной режим ЭЭС — нормальный установившийся. В таких режимах ЭЭС работает большую часть времени.

По тем или иным причинам допускается работа ЭЭС в утяжеленных установившихся (вынужденных) режимах, которые характеризуются меньшей надежностью, некоторой перегрузкой отдельных элементов и, возможно, ухудшением качества электроэнергии. Длительное существование утяжеленного режима нежелательно, так как при этом существует повышенная опасность возникновения аварийной ситуации.

Наиболее опасными для ЭЭС являются аварийные режимы, вызванные короткими замыканиями и разрывами цепи передачи электроэнергии, в частности, вследствие ложных срабатываний защит и автоматики, а также ошибок эксплуатационного персонала. Длительное существование аварийного режима недопустимо, так как при этом не обеспечивается нормальное электроснабжение потребителей и существует опасность дальнейшего развития аварии и распространения ее на соседние районы. Для предотвращения возникновения аварии и прекращения ее развития применяются средства автоматического и оперативного управления, которыми оснащаются диспетчерские центры, электростанции и подстанции.

После ликвидации аварии ЭЭС переходит в послеаварийный установившийся режим, который не удовлетворяет требованиям экономичности и не полностью соответствует требованиям надежности и качества элек­троснабжения. Он допускается только как кратковременный для последующего перехода к нормальному режиму.

Для завершения классификации режимов ЭЭС отметим еще нормальные переходные режимы, вызванные значительными изменениями нагрузки и выводом оборудования в ремонт.

Уже из перечисления возможных режимов ЭЭС следует, что этими режимами необходимо управлять, причем для разных режимов задачи управления различаются:

· для нормальных режимов — это обеспечение экономичного и надежного электроснабжения;

· для утяжеленных режимов — это обеспечение надежного электроснабжения при длительно допустимых перегрузках основных элементов ЭЭС;

· для аварийных режимов — это максимальная локализация аварии и быстрая ликвидация ее последствий;

· для послеаварийных режимов — быстрый и надежный переход к нормальному установившемуся режиму;

· для нормальных переходных режимов — быстрое затухание колебаний.

 

Электроэнергетическая система должна работать так, чтобы некоторые изменения (ухудшения) режима не приводили к нарушению устойчивости ее работы.

Схема электроснабжения промышленного района.

Системой электроснабжения называется совокупность устройств,

служащих для передачи, преобразования и распределения электрической энергии. Система электроснабжения промышленного предприятия предназначена для снабжения электроэнергией приемников, к которым относятся электродвигатели различных производственных механизмов, электрические печи, установки электрической сварки, осветительные, электролизные установки и т. п.

Источниками электроэнергии являются тепловые (ТЭС) или гидравлические (ГЭС) электрические станции, электрическая энергия на которых вырабатывается синхронными генераторами трехфазного тока. Последние приводятся в движение соответственно паровыми и гидравлическими турбинами. На тепловых электростанциях происходит преобразование тепловой энергии при сгорании угля, газа и т. д. На атомных электростанциях тепловая энергия есть результат расщепления атомов урана или других радиоактивных элементов в атомных реакторах. Гидротурбины используют энергию падающей воды.

В Советском Союзе созданы крупнейшие в мире тепловые, гидравлические и атомные электростанции. Вступили в строй Куйбышевская, Волгоградская, Братская, Красноярская и ряд других крупных гидростанций. Действуют Ново-Воронежская, Белоярская и другие атомные электростанции. Мощные тепловые электростанции располагаются в местах больших запасов нефти, газа, угля, перевозка которых железнодорожным и водным транспортом неэкономична. Электрическая энергия от удаленных электростанций к промышленным районам передается посредством высоковольтных линий электропередачи переменного тока при напряжении 110, 220, 400, 750, 1150 кВ. Существуют линии передачи на постоянном токе при напряжении до 750 кВ и строится линия на 1500 кВ. В крупных городах и промышленных районах, где по технологическим условиям требуются горячая вода и пар, сооружаются теплоэлектроцен­трали (ТЭЦ). ТЭЦ удовлетворяют технологические нужды промышленных предприятий в паре и горячей воде и одновременно вырабатывают электроэнергию.

Для обеспечения бесперебойного снабжения потребителей, удобства ремонта и более рационального использования элек­трооборудования, а также в целях экономии топлива электростанции промышленных районов соединяют между собой высоковольтными линиями в общее энергетическое кольцо, изображённое на рисунке.

 

Общую систему электроснабжения в том числе и промышленную можно представить в виде древовидной структуры (рис. 4), которая наглядно представляет процессы передачи электрической энергии к электроприемникам.

Рис. 4 Структура СЭС: ГПП – главная понизительная подстанция; ГРП – главный распределительный пункт; РП – распределительный пункт; ТП – трансформаторная подстанция; СА – силовой пункт; ШРА – распределительный шинопровод; АЭД – асинхронный электродвигатель; П – преобразователь; ОУ – осветительная установка.

 

В древовидной (дендроидной) структуре СЭС выделяется шесть уровней:

 

1УР – линия, питающая отдельный электроприемник от любого вышестоящего уровня, независимо от номинального напряжения электрических сетей.

 

2УР – линия распределительной сети напряжением до 1000 В, обеспечивающая связи силовых пунктов (СП) или распределительных шинопроводов (ШРА) между собой и с магистральными шинопроводами (ШМА) или с шинами цеховой трансформаторной подстанции (ТП).

 

3УР – магистральные шинопроводы или шины цеховой ТП.

 

4УР – шины распределительных подстанций (РП) высокого напряжения (при отсутствии РП 4УР и 5УР совпадают).

 

5УР – шины низшего напряжения ГПП или ГРП.

 

6УР – граница раздела сетей предприятия и энергоснабжающей организации.

 

 

 

Указанное количество уровней можно считать минимальным. Возможно появление заводских распределительных пунктов на 110 (220) кВ, которые питаются от районных источников питания и предназначены для увеличения количества присоединений и экономии проводниковой продукции. От распределительных пунктов (РП) 6-20 кВ могут питаться не только ТП 6-20/0,4 кВ и высоковольтные двигатели, но и вновь сооружаемые РП 6-20 кВ. Есть случаи, когда и эти РП в свою очередь питают другие РП 10 кВ. Для 2УР распространено питание распределительного щита 0,4 кВ от другого щита (появление еще нескольких подуровней), что особенно характерно для удаленных и маломощных потребителей.

 

В общем случае 6УР – это уровень потребителя электроэнергии: предприятие, организация, территориально обособленный цех, строительная площадка. Уровень, называемый заводским электроснабжением, интегрирует нагрузки ГПП, ГРП и распределительных устройств заводских ТЭЦ. С системой внешнего электроснабжения 6УР связан линиями электропередачи, которые присоединены к источникам питания энергосистемы: районным и узловым подстанциям энергосистемы; распределительным устройствам ТЭЦ, ТЭС, ГЭС, АЭС.

 

Высшее напряжение трансформаторов ГПП определяется шкалой напряжений, сложившейся в ЭЭС. На большей части страны существует система 500/220/110 кВ, а также развивается система 750/330/154 кВ. Напряжение 35 кВ для системы электроснабжения не рекомендуется и применяется, например, для дуговых сталеплавильных печей, а также для удаленных потребителей небольшой мощности.

 

Распределительные пункты 4УР получают электроэнергию от ГПП или ТЭЦ на напряжении 6-20 кВ и предназначены для ее приема и распределения между цеховыми ТП и отдельными токоприемниками высокого напряжения (электродвигатели, преобразователи, электропечи). В некоторых случаях РП совмещаются с цеховыми ТП для удобства питания цеховых потребителей электроэнергии. 5УР и 4УР относят к внецеховому электроснабжению, сети называют межцеховыми (магистральными), а напряжение – распределительным. От 5УР осуществляется электроснабжение крупных потребителей, от 4УР питаются цеха, отдельные здания и сооружения. Часть подстанций 4УР тесно связана с производственным процессом – технологией.

 

Цеховые ТП предназначены для преобразования электроэнергии напряжением 6-20 кВ в напряжение 220/380, 660 В и питания на этом напряжении цеховых электрических сетей. К цеховым электрическим сетям 110/220/380 и 660 В присоединено большинство электроприемников промышленных предприятий. Одними из элементов системы электроснабжения являются преобразовательные подстанции, которые предназначены для преобразования переменного тока в постоянный, а также для преобразования энергии одной частоты в другую.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: