Глава 3. Взаимодействие мв-излучения с

ВЕЩЕСТВОМ

 

МВ-излучение может взаимодействовать с веществами, находящимися в газообразном, жидком или твердом состоянии. На анализе взаимодействия МВ-излучения с молекулами основана широко используемая в научно-исследовательской практике радиочастотная спектроскопия, позволяющая получать информацию о свойствах молекул. Можно отметить, что по разным причинам препаративное проведение химических процессов в газовой фазе с использованием энергии МВ-поля пока еще не начато. Для химической практики наиболее интересно взаимодействие МВ-излучения с жидкими и твердыми веществами.

Заметное поглощение МВ-излучения наблюдается при облучении многих жидкостей и жидких растворов. Особенно сильное поглощение наблюдается в случае воды и водных растворов. Взаимодействие МВ-излучения с твердыми образцами может сопровождаться его отражением, поглощением и прохождением через объем образца без ослабления (рис. 1).

 

 

 

Твердые материалы по характеру взаимодействия с МВ-излучением можно разделить на три группы. К первой группе относятся металлы, гладкая поверхность которых полностью отражает МВ-лучи. При этом металл не нагревается, так как потерь энергии МВ-излучения в его объем практически нет. Если же поверхность металла шероховата, то МВ-излучение способно вызывать на таких поверхностях дуговой разряд.

Ко второй группе принадлежат диэлектрики, пропускающие МВ-излучение через свой объем практически неизмененным: плавленый кварц, различные стекла, фарфор и фаянс, полиэтилен, полистирол и фторопласты (тефлон и др.).

Наконец, к третьей группе принадлежат диэлектрики, при прохождении через объем которых происходит поглощение МВ-излучения, сопровождающееся, в частности, разогревом образцов. На практике для МВ-нагрева часто используют смеси, содержащие вещества, слабо и сильно поглощающие МВ-излучение. Меняя состав таких смесей, удается регулировать максимальную температуру нагрева смеси и состав образующихся продуктов реакций.

Принято долю исходной энергии МВ-излучения, поглощенную образцом и пошедшую на его разогрев, обозначать термином "потери" и называть коэффициентом потерь е". Отношение коэффициента потерь е" к диэлектрической постоянной г' облучаемого материала - это коэффициент рассеяния tg8 = е" / е' (тангенс потерь). Значение тангенса потерь характеризует способность данного материала при фиксированной температуре поглощать МВ-излучение определенной частоты и преобразовывать эту энергию в энергию теплового движения. При температуре 25° C значение tg 8 для разных веществ изменяется в тысячи раз. Так, при частоте около 2,5 ГГц значение tg 8 составляет для воды около 157, а для плавленого кварца - всего около 0,06.

Поглощение МВ-излучения обусловлено действием двух факторов. Во-первых, при наложении МВ-поля движение диполей (полярных молекул или иных обособленных групп атомов) приобретает определенную ориентацию, связанную с характером налагаемого поля. Когда интенсивность МВ-поля уменьшается, возникшая ориентация исчезает и хаотичность вращательного (и колебательного) движения молекул восстанавливается, при этом выделяется тепловая энергия. При частоте 2,45 ГГц ориентация диполей молекул и их разупорядочение может происходить несколько миллиардов раз в 1 с, что и приводит к быстрому разогреву образца. Для поглощения МВ-излучения по этому механизму необходимо, чтобы связь диполя с окружающими его в веществе атомами обеспечивала определенную свободу его вращательного (колебательного) движения. Если диполь связан с матрицей жестко и такие колебания слабы, то и заметного поглощения энергии МВ-поля по этому пути происходить не будет.

Второй фактор, особенно важный для тепловыделения при МВ-воздействии в водных растворах, обусловлен направленной миграцией присутствующих в растворе ионов под действием внешнего поля. Такая миграция ионов - это фактически протекающий через раствор электрический ток силой 7. Прохождение тока I через проводник с сопротивлением R приводит к выделению теплоты, пропорциональной IR 2. Так как сопротивление R возрастает с ростом температуры, а сила переносимого ионами тока I - с ростом их концентрации, то оба этих фактора заметно влияют на тангенс потерь МВ-излучения в растворах.

В настоящее время теория еще не позволяет найти значения как tg 8, так и г' и е" для твердых тел, жидкостей или растворов чисто расчетным путем. Поэтому приходится эти значения для конкретного вещества определять экспериментально.

Глубина проникновения МВ-излучения в объем образца зависит от значения tg 8 и различна для разных материалов. Так, при частоте излучения 2,45 ГГц глубина проникновения МВ-излучения в твердые оксидные материалы составляет около 5 мм, для жидкой воды - около 3,5 см, а для некоторых стекол и полимерных материалов - несколько метров.

При облучении массивных образцов с высокими значениями tg 8 (некоторые оксиды и соли) интенсивность МВ-излучения быстро уменьшается с глубиной его проникновения в объем образца. В таких случаях температура поверхностных слоев облучаемого образца будет значительно выше, чем слоев, лежащих в глубине от поверхности. Если же значение tg8 мало или размер образца невелик (например, образец состоит из небольших частиц), то МВ-излучение практически равномерно проникает по всему объему образца и обусловливает быстрый и достаточно равномерный разогрев всего его объема.

Объемный, а не только поверхностный (как это происходит при обычном тепловом воздействии) характер разогрева облучаемых образцов - важная особенность воздействия МВ-поля. Если контейнер для образца изготовлен из материала, практически не поглощающего МВ-излучение, то под действием МВ-поля может наблюдаться быстрый подъем температуры по всему объему содержащегося в контейнере материала. В результате возникает значительное ускорение различных химических процессов (органические реакции, процессы разложения, спекания). Кроме того, при МВ-облучении водных суспензий твердых материалов (например, при кислотном вскрытии образцов руд и минералов) наблюдается резкое возрастание скорости растворения не только из-за роста температуры, но и за счет усиления конвекционных потоков в растворе, а также действия некоторых других факторов.

Воздействие МВ-излучения может приводить к деструкции молекул и появлению в облучаемом образце повышенной концентрации свободных радикалов. Это позволяет в некоторых случаях проводить с использованием МВ-облучения химические реакции, начало которых обусловлено появлением (обычно в жидкой среде) этих радикалов. Так как такие реакции осуществить без МВ-облучения вообще не удается, то их протекание под действием МВ-излучения иногда называют микроволновым катализом.

К сожалению, в настоящее время теория взаимодействия МВ-излучения с диэлектриками пока еще не достигла такой степени развития, которая позволила бы заранее предсказать, будет или нет наблюдаться заметное поглощение МВ-поля диэлектриком. Поэтому приходится проводить обширные исследования по изучению воздействия МВ-излучения на различные объекты.

Источники МВ-излучения и техника проведения облучения

Термином "МВ-излучение" в настоящее время обозначают электромагнитные колебания с частотой примерно от 300 МГц до 300 ГГц (длина волны от нескольких метров до долей сантиметра). В спектре электромагнитного излучения микроволны расположены между ИК-излучением и радиоволнами (рис. 2).


 

Устройства для осуществления МВ-облучения называют микроволновыми печами. В таких печах источником МВ-излучения служит магнетрон, представляющий собой цилиндрический диод. В диоде имеется цилиндрический катод, вдоль которого направлено внешнее магнитное поле (рис. 3). В окружающем катод цилиндрическом аноде находится кольцо из взаимосвязанных объемных резонаторов. Разность потенциалов между катодом и анодом достигает нескольких киловольт. Перемещение генерируемых нагретым катодом электронов в магнитном поле приводит к появлению в магнетроне высокочастотных колебаний и вместе с ними колебаний и самих электронов.

Колеблющиеся электроны через антенну передают микроволновую энергию в виде электромагнитного излучения в окружающее пространство. Эта энергия по полому металлическому волноводу попадает в специальное устройство - резонатор (рис. 4). Далее излучение из резонатора попадает в рабочую зону печи, где и происходит МВ-нагрев образцов.

Для того чтобы МВ-излучение не покидало внутреннего пространства печи и не оказывало вредного воздействия на организм человека, используют металлические отражающие стенки, а переднюю стеклянную дверцу печи экранируют металлической сеткой, не дающей излучению выйти из внутреннего объема наружу. При работе печи в микроволновую энергию превращается примерно 50% расходуемой печью электроэнергии (остальная энергия рассеивается как тепловая в окружающее пространство).

Первые источники МВ-излучения были сконструированы в годы второй мировой волны (на использовании такого излучения и его способности отражаться от металлических корпусов самолетов основана работа радаров - устройств для раннего обнаружения авиации противника). В настоящее время созданы надежные сравнительно дешевые компактные МВ-генераторы и стало возможным их широкое применение как в быту, так и в науке и технике.

По договоренности, выработанной международным сообществом, в промышленных и лабораторных МВ-приборах обычно используют частоты 0,915; 2,450; 5,800 и 22,125 ГГц. В частности, в бытовых МВ-печах частота электромагнитных колебаний равна 2,45 ГГц (длина волны примерно 12,25 см).

Существуют разнообразные конструкции МВ-генераторов (МВ-печей), выпускаемых различными фирмами. В отечественной лабораторной практике для проведения МВ-облучения образцов обычно используют бытовые МВ-печи "Электроника" мощностью 0,5 или 50 кВт, работающие при частоте 2,45 ГГц. При этом если образцы размещают на плоском дне в рабочем объеме печи, то существует опасность их неравномерного и невоспроизводимого от опыта к опыту облучения. Связано это с тем, что в рабочем объеме печи возникает стационарная волна и один из образцов может оказаться в месте кучности волны, а другой - в зоне минимума ее интенсивности. К тому же на образцы может попадать излучение, отраженное от внутренних поверхностей печи и поверхностей других образцов. Чтобы избежать действия этих факторов, ухудшающих воспроизводимость результатов опытов, используют печи с вращающимися столиками. Вращение столика обеспечивает равномерность воздействия излучения на помещенные в печь образцы.

Можно также вывести излучение магнетрона "Электроники" через латунный прямоугольный волновод (рис. 5) в резонатор. В этом случае облучаемое вещество вводят в вертикальной кварцевой трубке или пробирке диаметром в 5-7 мм в отверстие, сделанное в строго определенном месте в резонаторе.

 

 

Несколько слов нужно сказать о том, как измеряют температуру облучаемых образцов. Понятно, что введение обычной металлической термопары резко нарушит распределение поля в образце и изменит его температуру. Поэтому при МВ-облучении сравнительно больших по массе образцов (20-30 г и более) температуру, которую обеспечивает облучение, фиксируют с помощью специальной заземленной термопары, находящейся в чехле, отражающем МВ-волны. В наших экспериментах, когда облучаемые образцы были массой 250-400 мг, такой способ фиксирования температуры непригоден. Поэтому о температуре, которая достигалась при МВ-облучении, судили следующим образом. В облучаемый полидисперсный образец добавляли микрочастицы диэлектрика (например, серы, иодида меди(1) с известными температурами плавления). Выбранные диэлектрики с МВ-полем практически не взаимодействовали. Форму этих микрочастиц заранее фиксировали с использованием сканирующего микроскопа. Если после обработки частицы не оплавлялись, то, следовательно, температура облученного образца не была выше температуры плавления взятого тест-материала.

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: